
VSTK Manual 5th Edition CyberSoft Operating Corporation

Handbook for the VFind
Security Took Kit(s)

5th Edition

The Leader in Total Security Solutions For
Linux, UNIX and all *NIX systems

* Anti-virus

* Baseline Control

* Pattern Analysis

* Computer Forensics

* Operational Monitoring

* Self-Healing and Repair

* Command Line or GUI

* Lights Out or Manned

* Identification and Rendering of Complex Files.

CYBERSOFT OPERATING CORPORATION
1958 BUTLER PIKE, SUITE 100

CONSHOHOCKEN, PA. 19428 U.S.A.

Telephone:+1 610-825-4748

Fax:+1 610/825-6785

Website: www.cybersoft.com

General Email: sales@cyber.com

Providing Security Tools Since 1988

VSTK Manual 5th Edition 1 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Authors

This book was written by the founder of CyberSoft, Peter V. Radatti.
The section on the CVDL language was written by Doctor Richard Perry
with contributions by Peter. The Lexical Analysis section was written by

Barbara Lynn Higgins. The 5th Edition of this manual was edited by Justin
Honer with technical support provided by Alec Hussey.

ISBN-13: 978-1533465139
ISBN-10: 1533465134

VSTK Manual 5th Edition 2 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Handbook
for the

VFind Security Took Kit(s)

This document can be used for instructor lead class or independent study.
Permission to print/copy granted for educational use provide the document is printed/copied

in whole including the copyrights and is not sold for more than the cost of reproduction.

Edition 5, May 2017
By

Peter V. Radatti
radatti@cyber.com

Portions of this book have been written by Dr. Rick Perry and Barbara Higgins.

Edition 5.00 May 2017
Edition 4.00 December 2014

Edition 3.00 May 3, 2005
Edition 2.00 April, 22, 2005
Edition 1.01 April 21, 2004

First Printed, Edition 1.00 April 12, 2004

© Copyright May 2017 by CyberSoft, Inc. All rights reserved.
Subject to change without notice.

Table of Contents Organization

VSTK Manual 5th Edition 3 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Organization of Handbook:

This handbook is organized into sections. Three of these sections were independent manuals which
have now been incorporated into this handbook. For that reason chapter numbers restart with each
section of the Handbook. For example there may be multiple Chapter 2(s), each in their own section.
There is also information that has never been published before and there is information that was
published but now collected into this handbook for easy reference. The goal was to make this
handbook the go-to place for all documentation related the the CyberSoft VSTK family of products.
If any errors are found, or if there are suggestions for improvement of the handbook, please email
support@cyber.com

Thank you,

Pete Radatti

VSTK Manual 5th Edition 4 of 343

Table of Contents
Title Page No.
Preface 6
A Short History of CyberSoft and VFind 7
Different Versions of the VFind Security Toolkit 8
Basic Computer Security Theory 11
Immunity to Software Attacks 14
Disinfection of Viruses 16
Activation Keys 18
VSTK Install Process 19
VSTK Supported Platforms and License Information 22
Example Script Notes 25
my.CyberSoft.com 29
www.CyberSoft.com 34
VFind 35
CVDL Language 74
Computer Viruses 74
Super Critical Systems and Anti-Virus 75
Lexical Analysis using VFind’s CVDL 75
MVFilter 78
CIT - Cyrptographic Integrity Tool 82
LBT & LBH 95
UAD 101
AVATAR (Self Healing) 111
THD 127
Bhead 132
JDIS 138
Visual Scan 140

VSTK Manual 5th Edition CyberSoft Operating Corporation

VSTK Manual 5th Edition 5 of 343

Table of Contents
Title Page No.
Simple Virus Scanning Protocol (SVSP) 145
Pattern Matching Using VFind And The CVDL Language 169
Chapter 1 Pattern Analysis 172
Chapter 2 Using VFind 180
Chapter 3 Basic CVDL 181
Chapter 4 VFind Scan Engines 189
Chapter 5 Bayes Scan Engine 200
Chapter 6 Low–Level CVDL 207
Chapter 7 CVDL and Text 211
Chapter 8 High–Level CVDL – AND, OR, XOR and NOT 215
Chapter 9 CVDL and Regular Expressions 219
Chapter 10 CVDL Macros 223
Chapter 11 CVDL Meta Operators 226
Chapter 12 CVDL Syntax Summary 233
Chapter 13 Performance and Testing 238
Lexical Analysis Using VFind And the CVDL Language 246
Foreword by Peter V. Radatti 248
Chapter One: The Basics 249
Chapter Two: Creating Simple VDLS 253
Chapter Three: Key Words and Phrases 268
Chapter Four: Spelling, Grammar, and Other Tricks 272
Chapter Five Creating and Using Macros 285
Chapter Six: Foreign Language Spam 291
Chapter Seven: Scam Spam 296
TABLE 1: MACROS HEAD.VDL 304
TABLE 2 PORN-HARASS.VDL 327
EICAR – VIRUS STRING TEST SYSTEM 331
End User License Agreement 333

VSTK Manual 5th Edition CyberSoft Operating Corporation

Preface – Document Organization

By design, this document does not organize all of the subject matter into groups. There are
several reasons for this, including the fact that a good deal of the material can belong in
more than one place. In addition, the material is organized in a way that makes for easier
assimilation, but not necessarily, easier reference.

Definitions

In this handbook, Unix, Linux and Apple Macintosh OS-X are used interchangeably. When
using the name Unix, the handbook is referring to all Unix like systems. The words
Microsoft and Windows are used to mean Microsoft Windows unless referring to a non-
Microsoft Windows system such as X-Windows.

The word Virus is used to mean all forms of attack software, examples of which are viruses,
worms, Trojan horses, droppers, vectors, “bombs” and hacks. CyberSoft does not make a
distinction between different types of attack code as to what VSTK products will detect or
not detect. If it is attack code CyberSoft wants to detect it.

VSTK generically refers to the VFind Security Tool Kit in all its different versions. This is
different from when referring to part numbers such as VSTK, VSTK-T, etc.

Legal Notices

The VSTK tools are copyrighted programs with multiple patents issued and pending. This
document is copyrighted, all rights reserved.

CYBER.COM®, VFind® and AVATAR® are registered trademarks of CyberSoft, Inc.
CIT™, THD™, UAD™, MVFILTER™, and JDIS™ are trademarks of CyberSoft, Inc.
Documentum® is a registered trademark of Documentum, Inc. All other trademarks and
copyrights are the property of their respective holders.

VSTK Manual 5th Edition 6 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

A Short History of CyberSoft and VFind

Prior to starting CyberSoft, Peter Radatti (CyberSoft Chairman/CEO) spent over 15 years
working in the aerospace and military industries for companies like Control Data
Corporation (CDC) at the Naval Air Development Center, General Electric (GE) at the
Valley Forge Space Center and Systems Research Applications (SRA) in Moorestown New
Jersey. The idea for CyberSoft’s first commercial product was crafted while at General
Electric. GE had no interest in the product which was an anti-virus scanner for Sun
Microsystem’s Unix computers.

Determined, he purchased a Sun workstation and completed the project at his residence
outside of work hours. When the program was completed, Peter initially planned to enter it
into the public domain, until General Electric took an interest in the program and asked Peter
to wait.

GE’s interest in the program, called “VFind,” caused Peter to realize that it might have
commercial value. At the same time, Bell Atlantic also showed interest in the program.
With two major corporations showing an interest in the program, Peter decided to invest his
personal savings to demonstrate the program at the Unix Expo International in October 1991
at the Jacob Javits Center in Manhattan. The investment paid off, and enough profit was
generated to launch CyberSoft, Inc.

CyberSoft, Inc is a corporation registered in Pennsylvania. It was founded July 29, 1988 and
incorporated January 1, 1993. The first product was shown in 1990 but publicly announced
at the Unix Expo International in New York City on October 30, 1991. On July 1, 2002
CyberSoft, Inc (CS). was reorganized as an intellectual property holding company, and all
operations were spun off to a new corporation called CyberSoft Operating Corporation
(COC).

CyberSoft Operating Corporation

1958 Butler Pike, Suite 100

Conshohocken, PA. 19428

Telephone:+1 610/825-4748

Fax:+1 610/825-6785

Website: www.cybersoft.com

VSTK Manual 5th Edition 7 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Different Versions of the VFind Security Toolkit and their Components

The VFind Security Tool Kits are general purpose computer security oriented products.
Consider them as tool boxes filled with various tools that can be used to solve problems or
build things. While these tools were all created with computer security as the primary
problem set, many customers have used them to solve problems that are unrelated to
computer security. As familiarity is developed with the individual tools and the tool
concept, ways in which to use these tools to solve unique problems will begin to surface.

There are multiple packaged flavors of the VFind Security Toolkit(s). Some of them are:

Part Number Title

VSTK VFind Security Tool Kit (Standard Edition)

VSTK-T VFind Security Tool Kit Turbo

Version Numbers

It is necessary to explain the version number system used by the VSTK product line.
Version numbers are simple to understand. Each tool has its own version number. Version
numbers are increased every time a change is made to a tool. The version numbers of every
tool is different because the tools have been introduced at different times and have different
development schedules. Older tools will have higher version numbers because of
enhancements made over the course of years. VFind was at Version 1.00 in 1990 and is
currently at Version 17.7.0 in March 2017. Tools are not released individually. They are
only released as a toolkit; consequently, each toolkit needs a version number. Tool Kits
have two part release numbers. They are release number followed by the letter “u” and the
update package number. If there has not been any updates, then an update number will not
be provided. As of March 2017 the latest version is VSTK 182. Please note that this is
Version 182 (One Hundred Eighty Two) and not Version 1.8.2. The product has been in
continuous development and sale since 1990 and so has a high version number. Older
versions of the products will continue to use the old release number but the update number
will be incremented each time a patch is provided.

VSTK Manual 5th Edition 8 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Table of VSTK Version Numbers and Release Dates

After Release 181, CyberSoft switched to implementing an incremental update system in

response to customers’ requests. This means that while new major releases were not pushed
as frequently, incremental updates were instead pushed to more easily allow customers to

operate within the confines of their given policies.

Please note that the minor updates only contain bug fixes, patches, and other incremental
changes. Major releases contain new features and breaking changes.

VSTK Manual 5th Edition 9 of 343

Release 182 181* 180 179 178 177 176 175 174 173 172 171 170 169 168
Released 3/17 3/13 4/12 8/11 1/11 9/10 10/09 5/08 4/08 4/07 1/07 10/06 3/06 5/06 5/05

VFind 17.7.0 17.5.0 17.3.0 17.2.5 17.2.2 17.1.31 17.1.31 17.1.29 17.1.27 17.1.25 17.1.25 17.1.21 16.1.8 15.4.3 15.1.0
VFindD 3.8.0 3.7.0 3.5.0 3.2.3 3.1.2 3.0.0 2.3.0 2.3.0 2.3.0 2.2.4 2.2.4 2.2.4 2.1.21 1.0.7 NA
VFindC 1.2.1 1.2.1 1.2.0 1.1.4 1.1.3 1.1.3 1.1.3 1.1.3 1.1.3 1.1.1 1.1.1 1.1.1 NA NA NA
VDLC 1.5.0 1.4.0 1.2.1 1.2.1 1.1.20 1.1.20 1.1.20 1.1.20 1.1.20 1.1.13 1.1.13 1.1.13 1.1.10 NA NA
UAD 3.25.0 3.21.1 3.19.9 3.19.7 3.19.5 3.18.12 3.18.8 3.17.8 3.16.7 3.15.3 3.15.3 3.15.3 3.15.3 3.14.4 3.13.5
THD 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4
CIT 4.3.5 4.3.5 4.3.5 4.3.5 4.3.5 4.3.5 4.3.5 4.3.5 4.3.5 4.3.5 4.3.5 4.3.5 4.3.5 4.3.3 4.3.2

BHead 2.1.0 2.1.0 2.1.0 2.1.0 2.1.0 2.1.0 2.1.0 2.1.0 2.1.0 2.1.0 2.1.0 2.1.0 2.1.0 2.1.0 2.1.0
JDis 2.1.6 2.1.6 2.1.6 2.1.6 2.1.6 2.1.6 2.1.6 2.1.6 2.1.6 2.1.6 2.1.6 2.1.6 2.1.6 2.1.5 2.1.5
LBH 1.3.5 1.3.5 1.3.5 1.3.5 1.3.5 1.3.5 1.3.5 1.3.5 1.3.5 1.3.5 1.3.5 1.3.5 1.3.5 1.3.5 1.3.5
LBT 1.3.7 1.3.7 1.3.7 1.3.7 1.3.7 1.3.7 1.3.7 1.3.7 1.3.7 1.3.7 1.3.7 1.3.7 1.3.7 1.3.6 1.3.6

MvFilter 5.1.6 5.1.6 5.1.6 5.1.6 5.1.6 5.1.6 5.1.6 5.1.6 5.1.6 5.1.6 5.1.6 5.1.6 5.1.5 5.1.4 5.1.3
VTest 1.5.0 1.5.0 1.3.0 1.2.2 1.2.1 1.2.1 1.2.1 1.2.0 1.2.0 1.2.0 1.2.0 1.2.0 1.2.0 1.2.0 1.2.0
Avatar 2.1.2 2.1.2 2.1.2 2.1.2 2.1.2 2.1.2 2.1.2 2.1.2 2.1.2 2.1.1 2.1.1 2.1.1 2.1.1 2.1.0 2.1.0

MiniWeb NA NA NA 2.2.1 2.2.1 2.2.1 2.2.1 2.2.1 2.2.0 2.1.1 2.1.1 2.1.1 2.1.1 2.1 2.1

1.4.0 1.2.2 1.0.0 NA NA NA NA NA NA NA NA NA NA NA NA
RTSD NA 1.0.0 1.0.0 NA NA NA NA NA NA NA NA NA NA NA NA

VC Server 1.0.0 1.0.0 1.0.0 NA NA NA NA NA NA NA NA NA NA NA NA

Visual
Scan

VSTK Manual 5th Edition CyberSoft Operating Corporation

Table of Supported Operating System Compatibility, Version 182 Subset

CyberSoft continually updates this information as new technologies are released and others
are deprecated. CyberSoft will port to any system for the cost of the system. If the OS
software is free and will run under a virtual machine, then there is no charge. There are more
systems supported than is shown on this chart. If there is a question about system support
please call.

VSTK Manual 5th Edition 10 of 343

Architectures GUI

AIX 4.3.3+ PPC Yes No
AIX 5.1 PPC Yes No
Debian 4 x86 Yes No
Debian 5 x86-64 Yes No
FreeBSD 7 x86 Yes No
HP-UX 11.00 HPPA, Itanium Yes No
Red Hat EL 5 x86, x86-64 Yes No
Red Hat EL 6 x86, x86-64 Yes Yes
Red Hat EL 7 x86, x86-64 Yes Yes
Solaris 8 SPARC Yes No
Solaris 9 SPARC Yes No
Solaris 10 x86, SPARC Yes No
Solaris 11 x86-64, SPARC Yes No
SUSE 9 x86 Yes No
SUSE 10.1 x86 Yes No

x86 Yes No

x86 Yes No

x86, x86-64 Yes No

x86, x86-64 Yes Yes

x86, x86-64 Yes Yes

x86 Yes Yes

x86 Yes Yes

x86 Yes Yes

Operating
System

Multi-
Threading

Ubuntu 8.04
LTS
Ubuntu 10.04
LTS
Ubuntu 12.04
LTS
Ubuntu 14.04
LTS
Ubuntu 16.04
LTS
Windows
2000 / XP
Windows
Vista / 7
Windows 8 /
8.1 / 10

VSTK Manual 5th Edition CyberSoft Operating Corporation

Basic Computer Security Theory

There are three basic ways to secure computers. When combined these three methods are
called a Ring Security System. Almost everything else is an extension of one of these
methods. Everything in computer security is a compromise that complies with the laws of
diminishing returns. Simply put, the more secure a system is the less useful it is. A good
security system makes a balance between these competing needs.

The Three Components of a Ring Security System
1. Compartmentalization

2. Fortressing

3. Reactive

The first method is compartmentalization. Compartmentalization basically means that the
system is isolated and locked up. Everything else is a compromise with various strong and
weak points but compartmentalization is the strongest method. It also provides the most
restrictions thereby having the most impact on use of the system. A compartmentalized
system will generally not have access to an outside network and be located in a specially
prepared and locked room. This is sometimes referred to as air gap.

The second method is called fortressing. This process attempts to make a fort or castle out
of the computer by hardening the security. It tries to keep the bad guys out. Modern
computers are network connected and are very complex. Even with the best fortressing
technology known, someone, somewhere will penetrate the fortress and gain entrance.
Fortressing itself is generally implemented in layers. The first layer is the network
configuration, network firewalls and anti-virus, operating system configuration for security,
automatic update systems, local firewall, local virus scanners and extremely important,
enforced security policies.

The third method is reactive security. Reactive security assumes that unauthorized people
are going to get in, or authorized people are going to make unauthorized modification to the
baseline, or worse yet, unauthorized users will make unauthorized modification. It then
deals with that issue. The most important part of reactive security is baseline configuration
control. In other words, keep the system baseline where it belongs, keep the system under
control and keep it performing its function as long as possible in a hostile environment. Of
course if a security breach is found it must be identified and fixed. Maintaining the system
configuration with a security hole is of reduced value.

Each of the three methods has drawbacks. The best overall solution is to combine all three.
This is common. The outermost ring provides compartmentalization to the extent possible.
On a network this may be provided by configuration of the system, router and firewall and
by physical security. The second ring is fortressing.

VSTK Manual 5th Edition 11 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Remove all known exploits from the system and harden the configuration to make it as hard
as possible to gain entry or control while allowing enough functionality to allow the system
to continue performing its job. The innermost ring is the reactive ring. Maintain the
baseline configuration at all costs. Correct unauthorized changes to the baseline. Remove
all attacks that gain entry. Automate the process so that discipline is maintained.

There is also a “fourth” method, which is really a modification of the fortressing and
reactive methods. CyberSoft considers this a fourth method because it is very important,
and yet the most complex and expensive to implement. This fourth method is Update
Management. Update Management is the process in which all manufacturer and
organization mandated updates are installed. On a single system with a automated or semi
automated update system, with a trusted user, this is not a problem. On networks of
thousands of systems with users that are both trusted, untrusted, trained, untrained, capable
and not capable of using the update system this becomes one of the most expensive and
difficult computer security tasks. In addition it is also an area of large risk. If an update
causes a critical process to fail and an automated update system has installed that update on
thousands of systems the result can be a major catastrophe. Above and beyond this, every
manufacturer has their own update management system. A typical computer may have
dozens of software packages installed each with a different update system.

Even with all of these problems, update management becomes a critical problem because the
most common reason for an update to be released is reactive. Someone found a security
hole and it must be blocked. One of the most common reasons that computer viruses and
worms spread so quickly on the Internet is because there are millions of systems that have
not been updated or a new hole has been discovered. The Internet is susceptible to the
agricultural problems of blight. Once a new attack comes along, it can wipe out an entire
crop.

Update Management is a critical computer security tool. In fact, large organizations will not
be able to wait for a manufacturer update to a problem and needs complete and proactive
control over their update processes. Lightning fast in-house response may mean the
difference between victory and defeat in an endeavor.

In addition to demonstrating ways to use the VFind Security ToolKits to solve the first three
problems this handbook will also show methods of using these same tools to solve the
Update Management problem.

VSTK Manual 5th Edition 12 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

CyberSoft Tools and their use in the Tertiary Security Ring Model

Here is a table that explains what is contained in the VFind packages as of VSTK Package
Version Number 182.

Table of Tools in Tool Kits

VSTK Manual 5th Edition 13 of 343

TOOL VSTK VSTK-T
Vfind Yes Yes

Vfind MT Yes Yes

Vfind Daemon No Yes

MvFilter Yes Yes

CIT Yes Yes

UAD Yes Yes

THD Yes Yes

Bhead Yes Yes

Jdis Yes Yes

Visual Scan Yes Yes

VDLupdate Yes Yes

Avatar No Yes

Tool

Vfind Yes Yes Yes

CIT No No Yes

THD No No Yes

UAD Yes No Yes

MvFilter Yes No Yes

Avatar No Yes (+Update mgmt)

Visual Scan No No Yes

Compartmentalize
(Lock it up)

Fortressing
(Harden it)

Reactive
(Baseline Control)

VSTK Manual 5th Edition CyberSoft Operating Corporation

Immunity to Software Attacks

Many intelligent people seem to think that for one reason or another their systems are
immune to software attacks such as viruses, trojans or worms. Not as often there are people
who think their systems are immune to “hacker” attacks, either inside or outside. Often
these people refer to firewalls, gateways and specific versions of an operating system in
support of their argument.

There is no such thing as a safe or immune system and a system cannot be made totally safe.
Even a system that has no connection to the outside world can be attacked. What a user can
do is make a system as safe as possible. Generally this means hitting the law of diminishing
returns, where making the system any safer also makes it non-functional.

In the past, people have asserted that Unix and other computers that utilize hardware
instructions to provide a Supervisor mode of operation were immune to attack. The use of
Supervisor mode is not necessary for viral infection or even any other form of attack;
therefore, the argument is invalid. This argument is also supported by the fact that there are
viruses in existence for Unix and other systems that utilize Supervisor mode. A white paper
written by Tom Duff and M. Douglas McIlroy of AT&T Bell Laboratories contained in the
USENIX 1989 Volume 2 journal not only attests to the existence of Unix viruses, but
provides source code for an example.

White papers by Dr. Fred Cohen, a pioneer in the field of computer viruses, demonstrated
that a computer virus could fully penetrate super user access on any computer, even properly
configured security rated computers in a short period of time. Dr. Cohen performed his tests
on multiple Unix systems. UPDATE: As of 2014 most major virus/trojan programs used to
steal that were originally developed for Microsoft Windows have been ported to Unix/Linux
systems.

Other people state falsely that dedicated single purpose computers such as process control
systems, cell phone systems and embedded computers are immune. There are already cell
phone viruses (Spain was struck with the first outbreak) and single purpose embedded
computers have been infected. UPDATE: As of 2014, this is now common knowledge but
at the time this was first written, the knowledge was considered hearsay.

Some people even went so far as to design, build and field “immune” computers using ROM
(read only memory) based operating systems. The theory was that if there is no way to
modify the operating system, then it can not be infected or hacked. In the paper “From
Little Acorns Mighty Viruses Grow” by Alan Glover of Pineapple Software, it was disclosed
that the Acorn Archimedes computer (a British educational computer system), which holds
all of its operating system and windowing systems locked in hardware based Read Only
Memory, had been successfully infected by computer viruses.

VSTK Manual 5th Edition 14 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

This is an extreme case of hardware based protection, and yet it failed. As of January 1994,
there were 52 virus families totaling 84 viruses affecting the system. If the Acorn, Unix,
Macintosh, Microsoft Windows, cell phone and process controller computers can be infected
or hacked, then any system can be. In 1993, Peter Radatti stated, “Those components of an
operating system that are deemed necessary for practical use, such as copy, append, change
permission settings and hundreds of other basic functions are the only necessary building
blocks for viral code.” and that, “Many simple and normal functions that may pass a security
screen, when combined, implement a virus” or any other form of attack.

VSTK Manual 5th Edition 15 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Disinfection of Viruses

All software is flawed. It is the nature of software. Programs which have run for 20 years
without error suddenly, and without notice, fault. If a software executable which is flawed to
begin with but at least tested (we hope) to operate properly under normal conditions is infected
by a virus or modified by a Trojan or other software attack then the operability of the program
is unknown and the state of the program is hostile. In addition, many viruses are poorly
written and the author has no idea what effect it will have on the many different targets it may
come across. Algebraically the equation would be fv(p) = p’. Function virus upon target
program p yields p-prime. A disinfection program is of necessity a different program than the
program that infected the file to begin with. Viruses do not run in reverse and undo the
damage done. Again, the authors of disinfection program cannot test them against all
combinations of viruses and target programs. The effect is a program that should never have
been modified being modified twice. Algebraically the equation is fd(p’) = p’’. That is,
function disinfection upon target program p-prime yields p-prime-prime. The result p-prime-
prime is not equal to p. Even if by some rare chance the result of p’’ is p, the state of the
program is unknown unless a cryptographic hash of p prior to the first transformation exists
and can be verified.

Table of Program Conditions after Disinfection

Programs which were infected by a virus and later disinfected by even the best disinfection
program in existence, are still damaged and should be at best considered untrustworthy and at
worst, should be considered seriously damaged.

There is one type of disinfection which while it will not yield the original file (p) it can yield a
non-hostile result (p’’). This is the case where a data file is infected. A perfect example of
this is Microsoft OLE or XML files. OLE files have been extensively used for Microsoft
Word documents and other types of documents.

Viruses which infect OLE documents are macros. They are interpreted by whatever is
processing the file. Removal of all macros from an OLE document will yield a result that is
still untrustworthy, but is at least known to be in a state which is not hostile. This
distinguishment is made because many macros change the contents of the file. In a word
processing document this may or may not be noticed. In a spreadsheet this may not be
noticed. If a macro virus changed a document directing someone to do something, it may be
serious but may be detectable by common sense. In a spreadsheet, a number or formula could
be modified in such a way as to not be noticeable. There are real life examples of viruses
which do this.

VSTK Manual 5th Edition 16 of 343

Condition Operatbility State
Program Good Good
Infected Unknown Hostile
Disinfected Unknown Unknown
Disinfected Macro Not Trusted Not Hostile

VSTK Manual 5th Edition CyberSoft Operating Corporation

Disinfection of viruses has several drawbacks besides what has already been mentioned. First,
they may leave a ghost* of the virus which can be detected by other anti-virus program. This
is common. Secondly, the industry practice is to remove all macros. If a macro is essential to
the proper use of the document, then the document is not recovered correctly. If a backup of
the document is not available, then disinfection of these types of files are an acceptable
starting place provided that the end user understands the limits of the disinfection program.

The only trustable method of disinfection of an executable program is to remove the program
and replace it with a known good copy. Even if backup copies were not made, this is often an
easy solution to implement by using the installation media. Disinfection should be considered
an undesirable and temporary bandage until a fully trustable solution can be implemented.

*Some anti-virus products will delete a macro virus by flipping the delete flag. This leaves
the macro virus intact and it will be detected by other products. The same is true of binary
infectors, some anti-virus products will loop around the infection and change just enough of
the code that they do not detect it themselves but other manufacturers products may still detect
the attack since the majority of the attack code is present. This is called a ghost virus.
CyberSoft does not do this, instead the MVFilter program will zero out the entire virus in
addition to flipping the delete flag. There is no ghost virus for anyone to detect.

VSTK Manual 5th Edition 17 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Activation Keys

VSTK/-T locks to a specific system using an activation key. The keys lock on nodename,
not hostid or domain name. For example, a hostid for a system might be 214435 while the
domain name associated with that system is www.cybersoft.com. The nodename for that
same system could be webbox. Notice that there is no relationship between these forms of
identification, other than they all refer to the same physical system. The nodename is what
the operating system thinks it calls itself. The domain names are how a domain name
servers resolves DNS requests into IP addresses. The hostid is hardware based and is
supposed to be something like a serial number but can be easily changed by someone who
knows how, typically using the boot monitor software of the system.

The disadvantage of using a hostid is that it is supposed to be hard to change. Using
Domain Names is not wise, since they tend to be moved from platform to platform
frequently. The advantage of using the nodename is that it is easy to change for the system
administrator. If a server breaks and the hard disk is transferred to another compatible
hardware platform, then the nodename of the system remains the same and the activation
key will operate.

To create Activation Keys an account must be created on my.cybersoft.com. This account
can be gained from CyberSoft Operating Corporation by requesting one along with your
purchase order number or other identification that associates you with the purchased
product. To contact CyberSoft by phone call +1-610-825-4748, fax at +1-610-825-6785 or
email at support@cyber.com.

VSTK Manual 5th Edition 18 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

VSTK Install Process

This information is subject to change without notice. The latest version of this information
can be found in the installation media in the file install.txt.

==

UNIX Installation Instructions for VFind Security ToolKit

==

1. Insert the CD-ROM into the CD-ROM drive or unpack the downloaded installation
package.

2. For CD-ROM, if the system does not have an "auto-mounting" daemon, then use the
`mount' command to mount the CD. (please see mount in the UNIX system manual) for
example:

$ mount -t iso9660 /dev/cdrom /mnt/cdrom

(Solaris example)

3. Once the CD is mounted, use the `cd' command to change the current directory to that of
the cdrom at its top level. For example:

$ cd /mnt/cdrom

(Solaris example)

4. Use the `ls' command to list the contents of the directory. Something similar to this
should be seen:

INSTALL.txt

archinstall.sh

install_toolsindex.html

noarch

README.txt

5. Read the file noarch/EULA.txt. This is a copy of the the user’s right to use the license.

VSTK Manual 5th Edition 19 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

6. Proceeding with this step means that the user agrees to the terms in noarch/EULA.txt.
Making sure that the user is in the root directory of the CD-ROM, run the ‘install.sh’ script.
It may be necessary to explicitly invoke sh when running install.sh: /bin/sh install.sh

7. Follow the instructions in the install script.

8. After installation, the only thing remaining is to setup a valid license key for the system.
If supplied with a Permanent Activation Key, or a Demo Key, then the user must create a
file called LICENSE, copy and paste the Permanent/Temporary Key into the file, and copy
that file into the VSTK base installation directory that was specified during the install
process.

9. If not supplied with a Permanent or Temporary Activation Key, please contact
CyberSoft. Contact information is provided at the end of this document.

10. Congratulations! VSTK is now installed!

11. CyberSoft also recommends signing up for a support and maintenance contract, which
allows the user to keep their protection up-to-date through daily downloads of updated virus
definition patterns. Contact information is provided at the end of this document.

12. For information on how to use the VSTK product and for recommended uses of the
VSTK tools, please look at the example scripts included with the product and/or view the
Support and White Papers sections on the CyberSoft web site.

For further assistance, please contact CyberSoft. Contact information is provided at the end
of this document.

Contents of the Distribution

Man pages for these are installed in the man directory below the VSTK_HOME directory
specified during installation. This directory should be added to the MAN_PATH
environment variable. They then can typically be read by doing, for example, `man VFind'.

In the VSTK_HOME directory specified during installation there are a number of additional
files. Important ones include:

VSTK Manual 5th Edition 20 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

bin/Directory containing wrapper shell scripts. These shell scripts set up needed
environment variables for executing the binary executables.

doc/html/html - versions of all man pages

doc/txt/text - versions of all man pages

doc/postscript/postscript - versions of all man pages

man/man1/troff - versions of application man pages

man/man5/troff - versions of protocol man pages (Turbo only)

LICENSE - an example license file

EULA.txt - Right to Use, License Agreement

programs/ - Directory containing the binary executables.

example_scripts/ - Directory containing example scripts

In order to access CyberSoft's virus definition updates (VDLs), the user will need to sign up
for the new VDL update system at https://my.cybersoft.com/signup

This service will provide the user with:

Easy-to-find support date: The new VDL update system shows the date when the user’s
maintenance will expire. The user’s maintenance contract must be current to access the
VDLs.

Easy-to-find help: The user’s new personalized VDL update page has links to training
manuals and white papers.

Automatic updates: If configured, the vdlupdate cron job (part of the installation procedure),
will keep the user’s VDLs always up-to-date.

Thank You!

==

VFind is a registered trademark of CyberSoft, Inc. The cyber.com, CyberSoft circle logo,
and the Centurion are trademarks of CyberSoft, Inc.

VSTK Manual 5th Edition 21 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

VSTK Supported Platforms and License Information

The VSTK ToolKits are supported on almost every version of Unix and Linux in current use
and many that are no longer in common use. CyberSoft will port to and support any
platform for the cost of the system. Many customers provide specialized systems to
CyberSoft for this purpose.

VSTK licenses are per system. The cost of the product is flat and the optional yearly
maintenance and upgrade is also a flat cost per system. The first year of maintenance and
upgrades via the Internet is free.

The deliverable VSTK media contains almost all supported platforms. The customer can
install on any system for which they have a license from a single deliverable. Activation
keys are text based and are obtained from CyberSoft.

1. Per system pricing. No “per user” costs. Great for servers and email systems. The price
is predictable and fixed.

2. No CPU or size costs. Add several CPUs, faster CPUs, no difference in price.
3. No system upgrade charges. Move from a small system to a big system. No difference in

cost.
4. Platform independence. CyberSoft supports just about every Unix system and several

Microsoft systems. CyberSoft will support any system for the cost of the system. As long
as the nodename is kept the same and the license is not violated, the license can be moved
from any platform to any platform without permission from CyberSoft. Examples:
from/to Sun Micro, HP, IBM, SGI, Linux, BSD, etc.

5. VSTK products are Perpetual license, while VSTK-L products are only for the specified
time. Most VSTK licenses never expire with the exception of Special products which are
time based licenses. Maintenance can be purchased every year for VSTK licenses.

6. Maintenance support is all inclusive, and includes maintenance, upgrades and telephone
support. Maintenance via Internet is free for the first year.

VSTK Manual 5th Edition 22 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Graphic – Recommended Use of VSTK on a File System

VDLUpdate

VDLUpdate is a Unix shell script supplied with all VSTK ToolKits. It's purpose is to give
the user an extremely easy manual or automatic means to update their virus definitions.
When used from the Unix command line, the user can manually update their definitions.
When used from the Unix cron system, the script runs automatically at the frequency and
time set by the user. A file locking mechanism is employed to prevent updating of the VDL
database while it is currently being used by VFind.

VDLUpdate uses port 443 which is the web HTTPS SSL port. This is the port that all
Internet browsers use when communicating with web servers that provide SSL encryption.
If the system can access an SSL encrypted website, it can use VdlUpdate without changing
any firewall settings.

VDLUpdate only downloads VDLs if there has been a VDL change since the user’s last run.
This is done by supplying md5 hash codes for the VDL database. If the system’s local hash
code does not match the hash code on the CyberSoft server, an update is required. After the
VDLs are downloaded, they are run against VFind as a final verification check. If all goes
well, the new VDLs are accepted. As part of the installation of the VSTK toolkit, the user is
given an option of configuring VDLUpdate for automatic execution. By choosing this
option, the user is assured that their VDL database is up-to-date as of the time of execution.
Users are urged to automate the execution of VDLUpdate and to run it often.

VSTK Manual 5th Edition 23 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Example Script For VDL Update

#!/bin/sh
#
Name: cron_vdlupdate.sh
#
Copyright 2003, 2004, 2005, 2006 Cybersoft Operating Corporation, All Rights Reserved.
#
umask 022
PATH="/bin:/usr/bin:/sbin:/usr/sbin:$PATH"
export PATH

every 4 hours, randomly
random minute, 0-59
#
x=`expr "$$" % 4`
h1=`expr "$x" + 0`
h2=`expr "$x" + 4`
h3=`expr "$x" + 8`
h4=`expr "$x" + 12`
h5=`expr "$x" + 16`
h6=`expr "$x" + 20`
h="$h1,$h2,$h3,$h4,$h5,$h6"
m=`expr "$$" % 60`

VSTK_HOME=<vstk_home>
vdlupdate="$m $h * * * $VSTK_HOME/bin/vdlupdate >/dev/null"

tmp="/tmp/cron.tmp.$$"
rm -f "$tmp"
crontab -l 2>/dev/null | grep -v "$VSTK_HOME/bin/vdlupdate" > "$tmp"
echo "$vdlupdate" >> "$tmp"

echo "setting cron vdlupdate run:"
echo "$vdlupdate"

crontab "$tmp"
rm -f "$tmp"

VSTK Manual 5th Edition 24 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Example Script Notes

The following is a list of the example shell scripts included with the VSTK product line and
a brief description of what function each script performs. These scripts will enable the user
to quickly become familiar with the programs and tools included in the VFind Security
ToolKit. The scripts require customization to the user’s local standards prior to
implementation. Aids are provided for that purpose. Subject to change without notice.

These scripts are fully functional and have been tested on a Solaris SPARC machine. The
scripts should be reviewed and edited prior to using to determine platform and system
specific requirements. Ensure that there is sufficient temporary disk space when using UAD
as UAD uses the temporary space for expanding archive files. The UAD option '-t' enables
the user to specify a temporary directory if the default, /tmp, does not have sufficient
available space. UAD also supports the '--recursion' option to limit the levels of recursion
when expanding archive files. In the example scripts, the recursion limit is set to 25, which
may not be suitable for the user’s system and resident archive files. CIT requires disk space
for the CIT database (cit.db), report (cit.rpt), and interim work files. The CIT option '--
dbpath' enables the user to specify the directory to store CIT files and to locate the
cit_danger.db file. The default location for the CIT files is the current directory.

SCRIPT DESCRIPTION

cit.sh

Runs the Cryptographic Integrity Tool (CIT) to generate an MD5 signature string for every
regular file on the system and stores the signatures in the CIT database file (cit.db). CIT
generates a report after each run listing the files that have been added, deleted, or modified
since the previous run.

uad.sh

Runs the Universal Atomic Disintegrator (UAD) utility to identify the file type of each
regular file on the system and to expand compressed archive files and identify and process
its sub-files.

uad_do.sh

Uses the UAD utility to expand a specified archive file. The resultant files are written to the
current directory.

vfind.sh

Runs the VFind virus scanner against all the regular files on system to identify infected files.
VFind output lists all the files that have been scanned and identifies which files are infected
and which virus infected the file.

VSTK Manual 5th Edition 25 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

cit_uad_vfind.sh

Pipes all the regular files on the system through the CIT, UAD, and VFind utilities. CIT
generates a database of signatures, UAD expands and types the files, and VFind scans for
viruses. On subsequent runs, cit uses the data of signatures to filter unchanged files and
passes only new or modified files to UAD and find. The SmartScan protocol is used by
UAD to pass file type and file contents to VFind.

cit_uad_vfind_lb.sh

Pipes all the regular files on the system through CIT, LoopBack Head, UAD, VFind,
LoopBack Tail utilities. The LoopBack Head and LoopBack Tail processes keep track of
files that VFind has tagged as infected, and ensures that they continue to be scanned until
they are replaced or removed from the system.

uad_Vfind_grep.sh

Pipes all the regular files on the system through uad and VFind. uad uses the Smartscan
protocol to pass file type and file contents to VFind. The VFind output is filtered so that
only the data concerning infected files is presented.

vfchmod.sh

Isolates all virus infected files on a UNIX system by setting their permission bits to zero and
sending a report to the "root" user. See the man page for the command "chmod" for details.

vfmv.sh

Moves files suspected of being infected with a computer virus to a directory named
./QUARANTINE.

vfrm.sh

Removes from the system files that have been tagged as infected by VFind. The user is
prompted before a file is removed. This is not recommended for whole system scans.

vfstab.sh

Scans the files that are referenced in the /etc/exports. i.e., those local file systems that are
available to be mounted on remote systems.

boot.sh

Uses the BHead utility to read a boot sector on a PC-based Unix system and passing the data
to VFind to be scanned for viruses. BHead allows the user to check the boot sector without
having to process the entire disk drive. The user must edit the script and provide the name
of the raw device and the blocking factor before running the script.

VSTK Manual 5th Edition 26 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

thd.sh

Uses Trojan Horse Detector (THD) to check every regular file on the system. THD output
identifies potential problem files.

mvfilter.sh

Uses the MVFilter utility to strip VBA Macros from the specified file.

cron_VFind.sh

These scripts create cron entries for running VFind cron_vdlupdate.sh and for updating the
VDL files.

uad_external

This directory of files comprises the interface for incorporating an external file expander
into the UAD utility.

wget.sh

Uses wget to download files and UAD|VFind to scan the downloaded files. Infected files
are saved and the others are removed.

cs_support.sh

This script can be used to collect data that would aid CyberSoft engineering in
troubleshooting reported problems.

boot_CIT.sh

This script shows how user can use CIT to detect changes in boot sector.

cit_uad_report_VFind.sh

This script shows a simple tip how user can get UAD's output as a separated file when CIT,
UAD, VFind are connected with SmartScan protocol.

uad_vfind_noscan.sh

This script is an upgraded version of existing uad_vfind.sh example-script especially for
excluding a specific mount point from scanning. Unlike the uad_vfind.sh, this new script
uses _config_noscan.sh instead of _config.sh. This script is also helpful if existing scripts
(excluder, Pl, noscans.sh) do not properly work on the system’s specific shell.

VSTK Manual 5th Edition 27 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

ARGUMENTS

The example scripts provided only use the most common options with each of the tools, so,
please read the documentation provided, consult the CyberSoft website www.cybersoft.com
or use the -h option with each of the tools to receive a listing of the available options. More
options can be passed to the tools from the command line with the following options:

For those scripts that use find:
-p <path>(where to start the find from - default is /)

For those scripts that use VFind:
-m <number of threads> (use multi-threaded version of VFind with specified number of
threads)
-v'<VFind options>'(other arguments to pass to VFind)

For those scripts that use CIT:
-c'<cit options>'(other arguments to pass to cit)

For those scripts that use UAD:
-u'<uad options>'(other arguments to pass to uad)

Also, the VSTK_HOME environment variable in the example scripts is set to the directory
identified as the VSTK home directory during installation.

DISCLAIMER

These scripts, programs, and patches are only examples, and may need to be modified to suit
the user’s requirements before they are used.

VSTK Manual 5th Edition 28 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

my.cybersoft.com

The my.cybersoft.com website is restricted to customers by userid and password. To apply
for a my.cybersoft account contact CyberSoft by phone or email and request an account.
Proof of purchase will be required at the time of the request.

This portal will allow the user to:

Manage and generate VSTK family of products licenses.

Obtain VSTK daily virus definitions manually. (An automated script is delivered.)

Download current and past versions of the VSTK software suites.

Download additional scripts and support downloads to help the user keep CyberSoft
products running as smoothly and efficiently as possible.

Please note that all screen shots are as of April 2017 and are subject to change without
notice.

VSTK Manual 5th Edition 29 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Screen-print of my.cybersoft.com Landing page

 Screen-print of my.cybersoft once logged-in

VSTK Manual 5th Edition 30 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Screen-print of my.cybersoft License Management page

Screen-print of my.cybersoft VDL Update/Support download page

VSTK Manual 5th Edition 31 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Screen-print of my.cybersoft VDL Update/Support Submit a Virus Sample page

Screen-print of my.cybersoft Product Downloads page

VSTK Manual 5th Edition 32 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Screen-print of my.cybersoft Account Management page

Screen-print of my.cybersoft / www.cybersoft Contact Information page

VSTK Manual 5th Edition 33 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

www.cybersoft.com

The primary support page for CyberSoft Operating Corporation and the VSTK family of
products is www.cybersoft.com. FAQs, training manuals and videos, pricing and example
scripts can be found here.

Screen-print of www.cybersoft.com as of April 2017

VSTK Manual 5th Edition 34 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

 VFind

Many people think of VFind as an anti-virus program instead of a pattern analysis system.
This is understandable since many customers need anti-virus programs and do not need a
pattern analysis program. This perception is also not entirely wrong, since VFind started life
as an anti-virus program and has multiple functions that are geared toward efficient processing
for that purpose. In fact, all anti-virus programs are single purpose pattern analysis programs
specialized to finding viruses. Since VFind is more than an anti-virus program, it has the
ability to perform functions that are not normal to anti-virus programs. It has a different
problem set to solve. VFind was the first anti-virus program to execute on something other
than a Microsoft operating system.

VFind is a high speed pattern analysis tool. In fact, it is the world’s fastest general purpose
pattern analysis program available commercially off the shelf (COTS). When delivered as part
of the VFind Security ToolKit, it is delivered with virus detection databases that make it into a
virus scanner. Pattern analysis is the most difficult part of computer security. In general, if a
threat can be recognized, it can be dealt with. Fast, accurate, flexible pattern analysis is a
must. It is also a difficult problem which makes VFind significantly more valuable than a
single purpose virus scanner.

VFind is unlike any other virus scanner in existence. It was the first anti-virus scanner for
Unix and Linux, the first heterogeneous virus scanner, the first scanner to be part of a toolkit,
the first scanner to include cryptographic hashing, the first scanner to deliver the scan database
in source, the first scanner to positively identify the file being scanned and the first scanner to
incorporate a full virus description language, CVDL. Unlike most virus scanners, it searches
for attacks in a file based upon what the file contents reveals its type to be. Most virus
scanners assume that the file name is a description of the file type. VFind determines the file
type by direct examination of the file's contents. This makes VFind significantly more
powerful than a virus scanner that only searches in files with the ".com" and ".exe" file name
extensions for Microsoft executable viruses because it is not reliant upon a file name which, in
a hostile environment (such as a virus attack), could be wrong. Without this additional
functionality, a mere file name change can be used as a form of stealth attack.
(example:Rename virus.exe to virus.dat.) In addition, this allows VFind to examine data in a
byte stream in which file names may not exist. This can be a significant feature if a computer
is network attached and invaluable in a firewall.

An example of an attack that VFind can detect but other anti-virus programs can not is a two
body problem. A normal virus/trojan is a single body problem. Normally a virus infects an
executable. The executable is named in such a manner as to allow it to be recognized as an
executable by the system. When the virus infected executable runs, the payload is delivered.
In a two body problem the payload is hidden in a file that is not normally scanned. An
example of that is “payload.data”.

VSTK Manual 5th Edition 35 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

This file will not be scanned by a normal virus scanner because it is not recognized by the
operating system or the virus scanner as an executable. In this case the contents of the file are
considered moot. The second body is an uninfected program which reads the payload file,
loads it into memory and executes it.

A virus scanner may be able to clean up the results of the infection in recognized executables
but the infection will reoccur every time the clean program executes since the payload file is
never scanned. Since VFind evaluates every file and determines the contents by direct
examination this problem can not occur because VFind would recognize the “payload.data”
file as an executable. Special Note:There are viruses which will “infect” jpeg graphic files,
flash files and other data type files that are normally not considered directly executable.

VFind is also heterogeneous. This is critical in a server or firewall environment. Often a
server will contain executable programs for network attached client systems of a different
architecture. A very common example of this is a Unix server providing network disk
services to Microsoft Windows workstations. In this case, the Unix system can harbor
viruses for the Windows system, even though it is itself immune to that attack. This
problem was documented by Peter Radatti in a white paper published in 1991,
“Heterogeneous Computer Viruses In A Networked Unix Environment” where the phrase
“Typhoid Mary Syndrome” was coined to describe the problem. VFind solves this problem
by simultaneously searching for Unix, Microsoft, Macintosh, Java and any other type of
attack programs CyberSoft deems important.

An interesting aspect of VFind is that it simultaneously solves for all patterns. This makes it
very fast when there are hundreds of thousands of patterns to search for. In addition, some
versions of VFind are multi-threaded and can scan more than one file at a time. Multi-
threading also allows VFind to take advantage of multiprocessor systems.

VFind includes the CVDL pattern analysis language. This system allows CyberSoft or the
user to define new attacks or any other type of information that can be examined by
advanced pattern analysis. CVDL is implemented in text so no binary modification is
required. In addition to the proprietary CVDL operators, the language includes the entire
Extended Regex language as a subset. CVDL is very powerful, includes macro capability,
meta-vdl capabilities and is constantly being expanded.

A meta-vdl is a VDL that references other VDLs in order to decide if a pattern is solved.
This is not a macro. Meta-vdl capability is unique and powerful. An example of where a
meta-vdl is useful is if several VDLs are all solved for a dataset. Each of those VDLs would
normally report, however the useful information that ALL of them solved would not be
reported. A meta-vdl would allow the CVDL programmer to inform the user that a
significant event took place. As an aid to the programmer VDLs can be set so as to not
report to the user but will set a flag for the meta-vdl.

VSTK Manual 5th Edition 36 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Another use for the CVDL system is to search for words or phrases that are not allowed on a
system. These phrases could be proscribed as part of a organization policy such as sexual
harassment, or could be part of a compartmentalization policy for handling classified
information, or for restricting what programs may reside on a computer by direct
examination. It also allows for reactive processing of espionage attacks in which data is
being moved. Finally, CVDL allows for very fast updates of the VFind tool to search for
new attacks without the need for replacement of the binary executable.

VFind has several engines. Each engine solves a different type of pattern analysis problem.
These engines are under constant improvement and engines may be removed or added on a
as-needed basis. The scanning engines are: “Basic Grunt,” “Case Insensitive,” “Jade”,
“Cryptographic Hash”, “Bayes” and others. There are also support engines: “CVDL
Compiler” and “Control System” but they are moot from a user standpoint.

The “Basic Grunt” engine is neither basic nor grunt, but is a very complex system developed
over more than two decades of time. It is a fast parallel search engine. The search time in
this engine is independent of the number of patterns being solved.

The “Case Insensitive” engine is the same as the “Basic Grunt” engine but was specifically
designed to operate on case insensitive patterns. Since case only exists for textual data this
engine is enhanced for that purpose. The engine views the letter “a” and “A” as the same
letter. This engine is normally activated using the CVDL command “~”. An example of
which is ~”Pete”.

The “JADE Engine” (Java Advanced Disassembly Engine) does a fast disassembly of Java
Byte Code then searches for patterns in the disassembly. This is also available as a stand-
alone command line tool for security analysts called JDIS (Java Disassembly). It is
important to disassemble Java Byte Code prior to virus scanning because it is the only way
to associate constant pool entries with opcodes. This association allows the virus scanner to
scan for what is actually going on in the program instead of guessing. VFind is the only tool
that does this. This is not a problem for JavaScript which is handled elsewhere in the
system.

The “Cryptographic Hash” engine(s) is a subset of the Cryptographic Integrity Tool (CIT).
It does not perform all of the functions of CIT but does process the danger-file database.
The danger-file database is a flat file that contains a list of the names of known Trojan
Horses and their MD5 cryptographic signatures. Since Trojan Horses and some other types
of software attacks are rarely infectious and are generally not polymorphic, there is no need
to search the entire file for a pattern when the entire file itself is the pattern. These attacks
can not be made safe and should always be deleted upon detection. Consequently an MD5
hash value can be calculated for every file processed and then compare that hash value to the
database of known hash values. If anything matches, it is an exact match.

VSTK Manual 5th Edition 37 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Of course, this feature can also be used for the detection of objects that are not software
attacks. Anything that is static can be digested into a hash value and placed in the database.

The “Bayes” engine was actually developed for the analysis of Unsolicited Bulk Email,
UBE (sometimes referred to as Spam). CyberSoft's implementation of Bayes is different
from, and in CyberSoft’s belief, better than most other implementations. In addition,
CyberSoft products allow it to be applied to any file desired. The applicability of the
algorithm is dependent upon the Bayes database. In short, the Bayes engine allows objects
to be statistically classified (file or data stream) as belonging to a class or family of objects
without specifically having knowledge of the object under evaluation.

The determination of belonging to a family of objects is determined by whatever is
programmed into the database. While not infallible, this engine allows for detection of
needles in a haystack in a statistically meaningful way without knowing what kind of needle
might be in the stack. Of course, this engine’s value can be made either moot or valuable
depending upon the quality of the database.

The “CVDL Compiler” changes text based programs written in the CVDL language to the
internal structures required for identification. It supports both the CVDL proprietary
language along with both the “POSIX Basic Regular Expressions” and “POSIX
Extended Regular Expressions”. It also interprets the vdl.list control file and manages all
file type restrictions.

POSIX Extended Regular Expressions have been enhanced to PCRE Regular Expressions as
of release 182.

The “Control” engine is basically the superstructure that manages all of the engines. This
engine is available to end users via command line options.

1. SmartScan read (-ssr) from UAD or other sources (since SmartScan protocol is public)

2. quiet level and chevron output meaning (--quiet=n)

3. multi-threaded, --threads=<num> option, plus –UAD=… option to have separate
UAD/SmartScan input for each thread.

VSTK Manual 5th Edition 38 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Customer Case Study

Customer case study number 2 demonstrates a typical use of VFind after a break in. This
part of the document was written by the customer with edits for brevity and clarity.

“We installed VFind on four dedicated email firewalls. Two in the United Kingdom, one in
the United States and one in Sweden. Another is planned for Australia. Each server is a
Sun Micro 400 series with 4 processors. (We get a lot of mail). A few years ago we had
external consultants draw up an anti-virus strategy document. They said, in summary:Use
more than one anti-virus product, but definitely keep VFind on the firewalls. Most of the
document was about selecting anti-virus for the desktops but essentially said that this
decision could be made on costs grounds as long as VFind remained on the boundary.

We merged with another company that had no firewall virus scanning. (They were not
VFind customers.) When the Melissa virus hit the world, both halves of the company were
infected and disconnected from the Internet. The day after the outbreak we have a signature
installed from CyberSoft and isolated our infected PCs so we could reconnect our half of the
company to the Internet. The other half of the company remained off-line for most of the
week. While managing the desktops was difficult for both halves of the company we only
had to update the three VFind servers to reconnect to the world. This allows us to update the
desktops away from the crisis. The other half of the company installed VFind on its servers
after this incident. ”

VSTK Manual 5th Edition 39 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

VFind Iterations

There are different iterations of VFind. The first and oldest version is the standard single
threaded command line version. Later, CyberSoft added the other versions to solve specific
customer problems.

Multi-threaded programs allow the user to take advantage of multiprocessor systems on
systems that support threading.

* - The VFind Daemon Binary Single Threaded is required for systems that do not support
multi-threading.

VFind Daemon Benefits

VFind Daemon provides user applications virus scanning and detection services at a high level
of performance. Running as a daemon process eliminates the need to re-initialize the scan
engines on each request. Without the overhead of initialization, files are processed as they are
received,improving response time and minimizing the effect of virus scanning on the main
application. CyberSoft's tests indicate that VFind Daemon is able to scan a user's Internet
accesses without introducing any noticeable delay. In addition to the initialization savings the
VFind Daemon offers multi-threading for multiprocessor systems. This allows the application
of additional processing power of a multiprocessor system to VFind. The VFind Daemon is
part of the VFind Security Tool Kit Turbo product. (VSTK-T)

VFind Daemon makes VFind's scanning and virus detection services accessible to any
application running on a user's system. An application connects to VFind Daemon using
sockets. The easy to use message interface makes passing a file scan request and processing
the result a straightforward task. VFind Daemon's multi-threading capability enables it to scan
requests from multiple applications concurrently.

Applications can access VFind Daemon services through an easy-to-use message interface.
The Simple Virus Scanning Protocol (SVSP) is a text-based, request/response interface that
gives applications full access to VFind Daemon's services. SVSP includes commands that
enable the program to set scanning options on a per-request basis and to specify the file to be
scanned. Requests can be tagged so that the subsequent responses can be matched.

VSTK Manual 5th Edition 40 of 343

VFind Iteration Single Threaded Multi Threaded

Vfind Yes No

VFind Multi-Threaded Yes Yes

VFind Daemon Binary * Yes No

VFind Daemon Multi-Threaded Yes Yes

VSTK Manual 5th Edition CyberSoft Operating Corporation

This allows the application to submit multiple scan requests and be able to match the
asynchronous responses. See SVSP documentation, source code example and FAQ in Section
2 of this manual.

The VFind Daemon also supports the interfaces for other available virus scanning daemons,
for example, ClamAV's clamd. This makes it possible to incorporate VFind Daemon into an
existing system with minimal software changes and enables applications to migrate towards
utilizing VFind's additional capabilities as required. NOTE: The version of the ClamAV
interface supported is now out of date, as of May 2017, and will be updated sometime in the
future.

VFind Daemon's multi-threading capability enables it to scale gracefully and take advantage
of systems with multiple processors. The number of threads used by VFind Daemon is
configurable and can be set to match the available computing power.

VFind Daemon Features

The VFind Daemon is a multi-threaded server process. It provides all the functionality of the
UAD and VFind programs. VFind Daemon supports file the expansion of archive files and
parses mail messages and HTML files. Multiple scan engines are supported: the parallel
scanning engine, emulator engine, MD5 engine, Bayes engine, JPEG engine, and Java
Disassembler. The VFind Daemon is highly configurable, enabling the user to specify
whether to scan for viruses or spam or both. VFind Daemon can be configured to scan for
information that is of concern to a specific business or site.

Applications connect to the VFind Daemon using sockets and using the Simple Virus
Scanning Protocol (SVSP) interface. SVSP is a text-based, request/response interface. SVSP
commands allow an application to set scan options and to send a request to scan a file. The
scan options can be enabled/disabled on a per request basis. The results of a scan are returned
in an easy to parse message. If a virus is detected in a file, a response is returned to the
application that identifies the infected file and identifies the virus. SVSP supports message
tags, that is, if a request is tagged, the resultant responses are returned with the same tag. This
feature allows the application to send multiple scan requests and to use the tags to match the
responses.

The VFind Daemon supports multiple interfaces for scanning daemons, for example, the
ClamAV clamd interface, in addition to propriety interfaces and CyberSoft's SVSP interface.
VFind Daemon accepts the message formats used to submit requests to clamd and returns the
results in the expected format. NOTE: As of 2017, the version of the ClamAV interface
supported is out of date and will be updated sometime in the future.

VSTK Manual 5th Edition 41 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

VFind Speed (Comparing Apples to Oranges)

While Windows based anti-virus only concerned itself with scanning selected parts of binary
executable files, VFind did not have the same luxury. First, Windows anti-virus programs
restrict what they scan by file name. Only programs ending in file extensions that are
executable such as EXE, BAT, COM, etc. are scanned.

Secondly, with the exception of self extracting archives (which are executables), most
Windows based anti-virus programs do not scan the entire file but restrict themselves to
scanning selected parts of the file where viruses are known to reside. By restricting
themselves to Windows they can take advantage of low level operating system directives to
read only selected portions of each file, and not bother processing the bulk of each file. They
do not run into a disk drive bandwidth bottleneck. This concept is not acceptable in a
heterogeneous environment such as modern day servers and in-transit processing systems like
firewalls. First, file names cannot be trusted to be accurate descriptions of the contents.
Secondly, viruses that infect Unix and heterogeneous environments are more complex than
Windows only viruses and may infect an executable program at any point in the file. There
are also many more types of encapsulating technologies, of which the Microsoft based
technologies are just a subset. When a complex system needs to be protected, halfway
measures cannot be tolerated. Since VFind does not do things half way, people have the
incorrect perception that VFind is slower than some Microsoft Windows based scanners.
Consequently, the problem of this incorrect perception must be addressed.

To prove 100% coverage of every file, VFind has to scan every byte of every file. It also has
to do the work of identifying everything by its contents instead of blind faith. This makes
VFind appear slow when compared to windows based anti-virus programs but it allows it to
do things other scanners can not do. The comparison is biased, since CyberSoft has clocked
VFind as significantly faster than Windows based anti-virus programs at processing data.
This means that VFind is faster, but handles a larger workload, which causes the overall time
to be greater. There are now competing products on the Unix platform, however, they are
slower than VFind. Another way to understand this problem is that a Windows based anti-
virus scanner can scan a very large disk drive in a matter of minutes. If the user reviewed the
total amount of data being scanned, and divided that number by the total number of minutes
the scan took, the user would learn that the program appears to be processing data at a rate that
exceeds the maximum data transfer rate of the disk drive. This is of course not possible, so
logic dictates that the Windows based scanners are not processing all of the data.

This is no longer true of some of CyberSoft's competitors’ programs that run on Unix and
heterogeneous environments. It is also not true of Java based anti-virus programs which are
painfully slow, but for reasons that have to do with Java and not what was already stated.
Other competitors learned that doing things half way in these complex environments does not
work.

VSTK Manual 5th Edition 42 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

In fact, when VFind was compared to CyberSoft’s competitors’ Unix offerings, VFind was
significantly faster. This however, is no help since people’s perceptions were created on the
Windows platforms which cut corners in favor of speed at the cost of security and attention to
detail.

The issue of speed is a perceptional problem and not a technical problem. CyberSoft's
solution has been twofold. The first has been educational. This has been somewhat
successful, but it is not feasible to educate the everyone. The more successful solution has
been technical. CyberSoft has been making VFind faster. It took almost 15 years of constant
effort, but CyberSoft's algorithms are now significantly faster than any other commercial
product without any reduction in the features. VFind is doing more work than anyone else, at
a faster pace. The next thing that CyberSoft implemented was context switching of VDLs
based upon content. CyberSoft's product now has the option of restricting looking for OLE
based viruses to OLE files. In the past, CyberSoft products searched every file for every type
of virus. There is a small risk to this. Since this feature is optional, it is only used where the
risk has been deemed to be low or nonexistent. One example where this strategy cannot be
used is that OLE documents must now be searched for some types of binary executable
viruses. Due to the flexibility of the CVDL language, it is trivial to direct VFind to perform
this task and to do so without changes to the VFind binary executable.

There are still ways in which speed can be compromised and which the end user has direct
control. The first is the way in which the user will use VFind. When using VFind inside of
another program, an example of which is a script, then VFind should not be restarted for every
file scanned. VFind has a large startup overhead. Over the course of thousands of files that
overhead is negligible but over the course of one file it is large. Use the daemon, or any other
method, but do not restart VFind for every file.

Another way in which speed can be compromised is to thrash the disk drive. A thrashing disk
drive will slow down everything on the systems, not just VFind. Basically, the disk drive is
causing the heads to move excessively. Some ways of causing thrashing is to have too little
RAM memory in the system. This will cause a large amount of read/writes to the swap
partition of the drive. If the swap partition is on the same drive that other reads and writes are
being done to, then that could slow the system down. In this case the solution is to add RAM
to the system and to move the swap partition to a drive of its own. For maximum benefit, use
an SSD drive for swap and it will benefit many programs and not just VFind. Finally, if
scanning many compound files then the UAD program breaks these down into their
components before processing by VFind. If the /tmp directory is on the same drive then both
thrashing and throttling could occur. Throttling is when the amount of data being read/written
to a drive exceeds the bandwidth of the drive. The solution here is to either use a RAM disk/
SSD disk or to move the tmp space UAD uses to someplace else in the system file structure
that is on a different drive. The UAD command line to do this is –tmpdir=xxxx where xxxx is
the directory to be used instead of /tmp. These are all basic system tuning issues that can be
resolved by a System Administrator.

VSTK Manual 5th Edition 43 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

A more difficult to resolve problem is caused by the fact that the CVDL language is full
featured and CVDL statements can be written that are extremely slow. Some operators are
slower than others. In addition, very complex scanning programs can be created. Just like any
computer language VFind will do what it is told to do. If it is given a pattern analysis program
that means that it must do millions of operations more than normal that will slow down the
program. Pattern analysis programs can always be optimized in the CVDL language to avoid
this problem.

The VFind command line option “--trig-count” will help to determine which CVDL
statements are slowing down the CVDL program and fine tune them.

There are many considerations when tuning VFind for speed. Most of these considerations are
in the user’s control. Some of these issues will now be examined below.

Historically, virus scanning and pattern recognition were dependent on two things: disk I/O
performance, and processing power. Essentially, how fast data can be read, and how fast data
can `be processed. Because of this, tuning and optimizing VSTK for performance applications
is very much hardware dependent. However, there is still opportunity to improve performance
by optimizing how system resources are utilized, and VSTK gives the user the flexibility to
adapt the product to many different environments. The key to increasing performance with
VSTK (and specifically VSTK-Turbo) is parallelism. This means removing data flow
bottlenecks and fully utilizing the CPU. The first rule of thumb is to avoid using pipes while
invoking components of VSTK at all costs. This causes a situation where data can only be
processed in a linear fashion, restricting the flow of data into VFind-MT. For example, using
the find command in conjunction with UAD and VFind-MT connected via pipes, will cause
VFind-MT to only be as fast as UAD can process, which is one file at a time. This situation
can be easily avoided with the --uad flag which is built into VFind.

When used in conjunction with the --threads flag, VFind-MT will invoke one UAD process
for every VFind process, thus removing the bottleneck caused when using only one UAD
process. Threading is the next consideration in the optimization process. It is a common
misconception that there should be close to a one-to-one relationship of processes to processor
cores. Most of the time, this rule does not apply and will not be effective because all system
resources available will not be utilized. In many cases, it is actually much more beneficial to
run many times more threads than physical cores on the processor. The number of threads
used, directly equates to the number of files VFind is able to process at any given time. If 16
threads are being used, and there is still more than enough processing power left over, and the
disk is not being thrashed, then there is the potential to process more data at once simply by
increasing the thread count. The optimal thread count will differ from system to system.

VSTK Manual 5th Edition 44 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Different types of processors and different types of disk setups will handle vastly different
types of work loads. A system with many large files and archives will largely benefit from a
lower thread count as a lot of processing power is required. A system with many small files
will benefit from a higher number of threads as the files can be read and processed more
quickly. Logically then, systems with a wide variety of data will find that its optimal thread
count is somewhere in the middle. Eventually, limits on the current hardware may be reached,
at which point the hardware configuration may need to be optimized. As previously
mentioned, processing power and disk I/O are where most bottlenecks occur, so these should
be the focus. Processors which cope well with many small tasks run in parallel, such as most
modern multi-core desktop processors, will work best. Generally speaking, the more physical
cores in a system, the better VSTK will be able to perform. Hard disk drives (HDDs) are the
most common source of I/O bottlenecks. HDDs are notoriously slow because the disks are
physically too slow to provide large amounts of data very rapidly.

This was a problem until recently when solid state disks (SSDs) became widely available at an
affordable price point. Since SSDs are mostly random access, it is possible to read from them
at speeds exceeding 500 MB/s, making them perfect candidates for increasing VSTK
performance. CyberSoft has demonstrated and conclusively proven that, with relatively
inexpensive off-the-shelf hardware, the ability to process data at a rate of up to 2.43 gigabytes
per minute with room for improvement. It is important to note that results may vary,
depending on the hardware used, as well as how heavy of a burden is already being placed on
the system by other programs. During testing, CyberSoft used 8-core desktop processors with
SSDs to achieve these speeds. A highly parallel system configuration and simple product
optimization is what made these speeds possible. With enterprise level hardware, it would be
theoretically possible to process orders of magnitude more information.

VSTK Manual 5th Edition 45 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Command Line Options For VFind

NAME

vfind - Heterogeneous Anti-Virus Tool

SYNOPSIS

vfind

[-c, --copyright]

[-h, --help]

[-v, --version]

[--vlist]

[--md5=<value>]

[--md5-disable]

vfind

[-d, --dup-check]

[--trig-count]

[-e, --exit-on-error]

[-ev, --exit-on-vdl-error]

[--end]

[-i, --ignore-eof]

[--jadevdl=<value>]

[--libon=<value>]

[--liboff=<value>]

[--cbayes=<value>]

[--noload=<value>]

[--noloads=<value>]

[--noscan=<value>]

[--noscans=<value>]

[--notell=<value>]

[--notells=<value>]

[--force-scan]

[--recursion-limit=<value>]

[--follow-symlinks]

[--ignore-symlinks]

VSTK Manual 5th Edition 46 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

[--keep-tmpfiles]

[-p, --per-file]

[--pid]

[--quiet=<value>]

[--quit]

[--rcf=<value>]

[--pidfile=<value>]

[--savepid=<value>]

[-ssr, --smartscan-read]

[-sst, --smartscan-types]

[--stdin]

[--tmpdir=<value>]

[-u, --unbuf]

[--uad=<value>]

[--uad-disable]

[--vdl-list=<value>]

[--vdl=<value>]

[--vdl0=<value>]

[--vdlc=<value>]

[--vdlm=<value>]

[--vdl-data-file=<value>]

[--max-vdl-data-size=<value>]

[--rebuild-vdl-data]

[--vexit]

[--#=<value>]

vfind-mt

[--threads=<value>]

DESCRIPTION

VFind is a heterogeneous virus scanner that simultaneously scans for a host of malware
targeting Windows, UNIX, Linux and other systems, including denial of service attacks, back
door attacks, hostile java applications and applets, OLE/VB5 macro viruses, and common
hacks.

VSTK Manual 5th Edition 47 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

OPTIONS

-c, --copyright

Display copyright information and then exit. All other options will be ignored.

-h, --help

Display usage message and then exit. All other options will be ignored.

-v, --version

Display version information and then exit. All other options will be ignored.

--vlist

Print to stdout a list of all viruses VFind scans for.

--md5=<value>

Read additional md5 signatures from the specified file.

--md5-disable

Disable the MD5-engine when VFind/VFindd starts.

-d, --dup-check

Check for duplicate VDL names and definition and other potential problems. With this option
enabled, duplicates will be reported as parser errors. Also, any VDL segment which starts
with an offset range or .* operator will be reported as a parser error. An offset at the
beginning of a VDL segment is allowed by the CVDL syntax, but does not make sense to use,
and may cause the VDL to run very slow.

--trig-count

Lists the names of any VDLs that could not be indexed for speed, and also the trigger and run
counts for all VDLs. In general, only simple VDL constructs can be indexed, and only
constructs containing strings of four or more bytes. Having many non-indexed VDLs, or
VDLs with excessive trigger hit counts, will make VFind run significantly slower.

-e, --exit-on-error

Exit immediately after encountering any kind of error or warning condition. Normally, VFind
prints a warning message and attempts to continue processing after encountering a non-fatal
error, such as a syntax error in a VDL description.

VSTK Manual 5th Edition 48 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

-ev, --exit-on-vdl-error

Exit immediately after encountering any kind of error related to processing of VDL files.
Normally, VFind prints a warning message and attempts to continue processing after
encountering a non-fatal error, such as a syntax error in a VDL description.

--end

Used to exit VFind while in Interactive mode.

-i, --ignore-eof

Do not close the input stream after encountering EOF, but continue to read file names or
SmartScan input.

--jadevdl=<value>

Load additional virus signatures from file. File contains VDL models for hostile java applets
and applications.

--libon=<value>

Turn on the specified library. VFind will list the available libraries on startup. Some libraries
are turned off by default.

--liboff=<value>

Turn on the specified library. VFind will list the available libraries on startup. Most libraries
are turned on by default.

--cbayes=<value>

Tells VFind to read Read additional cbayes data from file.

--noload=<value>

Disable loading the specified VDL. This may be useful if the scanned data contains a large
amount of false positives for some particular virus. <value> is the name of the virus as it
appears in the VDL file, for example:--noload="W32/Sircam.a" .

--noloads=<value>
Disable loading the VDLs listed in the specified file. Each line of the file should contain the
name of a virus as specified for the --option. Leading and trailing white-space is ignored, as
are empty lines, and comment lines beginning with ‘#’.

--noscan=<value>
Turn off scanning of the named file or directory. This may be useful if the scanned file or
directory contains a large amount of false positives of different virii, e.g. if its is a virus
scanning database or similar.

VSTK Manual 5th Edition 49 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

--noscans=<value>

Turn off scanning of files or directories listed in the specified file. Each line of the file should
contain a filename specified for the --noscan option. Leading and trailing white-space is
ignored, as are empty lines, and comment lines beginning with ‘#’.

--notell=<value>

Turn off reporting the specified virus. This may be useful if the scanned data contains a large
amount of false positives for some particular virus. The name of the <value> is as it is
reported by VFind, e.g. --notell="CVDLW32/Sir-cam.a" .

--notells=file

Turn off reporting the viruses listed in the specified file. Each line of the file should contain
the name of a virus as specified for the –notell option. Leading and trailing white-space is
ignored as are the empty lines,and comment lines beginning with ‘#’.

--force-scan

Force scanning of the compiled VDL data file, which is normally not scanned, but instead
protected from tampering by a cryptographic checksum. Note: this should be expected to
produce a massive amount and of hits, and may be extremely slow.

--recursion-limit=<value>

Maximum levels of sub-directories to recursively scan, or 0 to not scan directories at all. By
default, no limit is imposed.

--follow-symlinks

Follow symbolic links pointing to directories. By default, symbolic links to directories are
ignored.

--ignore-symlinks

Ignore symbolic links pointing to directories. By default, symbolic links to directories are
ignored.

--keep-tmpfiles

Do not remove temporary files when done.

-p, --per-file

Display the number of possible virus infections for each file.

VSTK Manual 5th Edition 50 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

--pid

Print process id to stderr.

--quiet=<value>

Suppress some of VFind's verbosity:

0:The default behavior.

1:Suppress the “enter filename” prompt.

2:Suppress the “checking file” output.

3:Suppress all per-file output, including virus detections.

--quit

Used to exit VFind while in Interactive mode.

--rcf=<value>

Read additional command line arguments from rc file.

--pidfile=<value>

Save process id to file.

--savepid=<value>

This option is scheduled to be removed in a future release. Use --pidfile instead.

-ssr, --smartscan-read

Read a SmartScan stream on standard input.

-sst, --smartscan-types

Displays file types and any VDLs skipped due to file type restrictions.

-nosst, --no-smartscan-types
Disable VDL file type restrictions; apply all VDLs to all file types.

--stdin
Scan raw data on standard input.

--tmpdir=<value>
Directory to store temporary files in.

VSTK Manual 5th Edition 51 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

-u, --unbuf

Use unbuffered reads for SmartScan input. Use of this option may cause a performance
penalty; use it only when required.

--uad=<value>

Run UAD as a sub-process with the specified command-line options passed to UAD in
addition to UAD in addition to -ssw and -s. Thus, UAD will read file names form standard
input and write SmartScan output to VFind. This functionality is enabled by default this
option may be used to specify additional UAD arguments.

Example:

$ vfind --uad="-M -H3"

$ uad -s -ssw -M -H3 | VFind -ssr

--uad-disable:

Disable advanced file-type detection and disintegration of files during scanning.

--vdl-list=<value>

Read the VDL library list from the specified file instead of from
$VSTK_HOME/data/vfind/vdl.list. Must be the first command-line option if used because it
must be processed before other options like --libon= which require the VDL library list file to
have already been read. Note that the VDL files specified in the VDL library must be in the
$VSTK_HOME/data/vfind/ directory.

--vdl=<value>

Read additional virus descriptions from the specified file.

--vdl0=file

Read additional virus descriptions from the specified file; these patterns will always be
scanned in the order listed, before any other patterns, bypassing the fast scan engine.

--vdlc=<value>

Read additional case insensitive virus descriptions from the specified file.

--vdlm=<value>

Read additional meta virus descriptions from the specified file.

VSTK Manual 5th Edition 52 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

--vdl-data-file=<value>

File to store compiled VDL data in for faster startup. If not specified,
$VSTK_HOME/data/vfind/ac.dat is used.

--max-vdl-data-size=<value>

Maximum allocated size of the compiled VDL data file.

--rebuild-vdl-data

Force recompilation of VDL data. By default, the file is compiled only when the VDL
configuration has changed.

--vexit

Return a known value on exit.

--#=<value>

Stop scanning a file after finding <value> viruses. Default is 1. Use 0 for no limit.

--threads=<value>

Ignored when single-threaded.

USAGE

INPUT

VFind can be run in three ways.

1. Interactive mode:
Running VFind without any file arguments (or other input such as SmartScan and stdin) will
result in a prompt asking what file to scan.
Example:

$ vfind

2. Batch mode:
VFind can be invoked with a list of files (or other input such as SmartScan or stdin). In this
mode, VFind will scan all of the targets and write a report to stdout. This mode is useful when
scanning many files or directories.
Example:

$ vfind *.doc *.exe

VSTK Manual 5th Edition 53 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

3. Automated mode:
VFind can be run from a script, batch file, or other application and be scheduled using UNIX
cron or a similar program. To run in this mode simply create a VFind command and place it
in the appropriate place in the script, batch file, or application. When this mode is invoked,
VFind will run unattended and generate a report to stdout. This report can be redirected to a
file, emailed, or otherwise processed. This mode of operation is useful when scanning a large
amount of data on a regular basis.

OUTPUT

VFind's output can be very verbose at times. In order to cut down the output CyberSoft
recommends using the choke method. The choke method is as simple as piping the output
from VFind into grep, or a similar tool.

Each line of output from VFind starts with a chevron as follows:
Chevron Meaning

##==> Informational Message
##==>>VFind Warning
##==>>>Serious VFind Condition
##==>>>>Possible Virus Detection

Example:

$ vfind / | grep '##==>>>>’ REPORT

The above example would only show errors and virus detection messages.

CUSTOM MESSAGES

By default, VFind output is worded for virus scanning. When VFind is used for scanning for
things other than viruses, it is possible to customize its messages thru the use of particularly
formatted comments in the *.vdl files, or in the vdl.listfile for messages that are not specific to
a particular VDL file. Comments of the form $name = <value> sets the named variable to the
given value. The following variables are recognized, and will change the default text (in
parentheses below) to the specified value.

$pattern-type (VIRUS)
A short name used to identify the pattern.

$pattern-match (VIRUS POSSIBLE)
Message presented when a pattern matches.

$pattern-description (possible virus infection)
Message describing what the pattern matches.

VSTK Manual 5th Edition 54 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

$pattern-not-found (No apparent virus infections)
Message presented when no patterns matched.

Variable names and values are case independent; VFind adjusts the case to match the running
text of the output. VFind adds -e or -es when needed to evaluate the pattern type or pattern
description in plural; more complicated plurals can be given explicitly by specifying the
variable value as singular/plural.

SMARTSCAN

VFind is a SmartScan compliant tool. Specifying the -ssr option to VFind will cause it to read
a SmartScan stream from stdin.

For example:

$ find /export/home -type f -print | uad -s -ssw | vfind -ssr > REPORT

SPEED

Why would a user ever want to use less than the maximum speed? Most users will never have
to worry about this; however, here are a couple of reasons some might.

One reason is that there is a space/speed trade-off. If the dynamic space required to run VFind
with --speed=2 is prohibitive on the machine (i.e., VFind can not run or there is excessive
paging), try --speed=1.)

Another reason involves the trade-off between start-up time and marginal scan time. With
--speed=2 there may be a substantial start-up time as VFind initializes various internal
structures. This might be on the order of, e.g., one second. When scanning a single small file,
this might be a waste of time.

On the other hand, --speed=2 provides the fastest marginal scan time, that is, the time needed
to scan each extra byte of data. Thus, when scanning large amounts of data with a single
invocation of VFind (such as when handling SmartScan data from UAD or handling a large
number of file names piped in via standard input), --speed=2 (if there is space for it) is a good
idea despite the start-up time.

LOCKING

Note: This feature is provided for backwards compatibility only, and is scheduled to go away
in a future release of VFind. To update VDL files on the fly, the files should be
copied/untarred first with a different name, and then renamed to their correct name. This will
assure that VFind can not read a file before it's complete.

VSTK Manual 5th Edition 55 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

VFind includes an internal locking mechanism to facilitate VDL updates. This is useful for
systems where VFind processes are started continuously, for example a mail server which runs
VFind automatically to process one or more newly arrived mail messages. If updated VDL
files were installed at the same time that a VFind process was started, the VDL data read by
VFind could be wrong or missing. This problem is avoided by using lvfind and lvfind links to
VFind which use internal locking. A dummy file, $VSTK_HOME/data/LOCK by default, is
used for the fcntl() locking. There is also a --lock= command-line option to specify an
alternate lock file.

If VFind is invoked using a name starting with 'l', (e.g. an lvfind symlink to VFind), then it
attempts to acquire a shared (read-only) lock on the LOCK file. If invoked using a name
starting with 'l' (e.g. lvfind), then it attempts to acquire an exclusive (read-write) lock on the
LOCK file.

Shared locks do not interfere with other shared locks, but will fail if there is an existing
exclusive lock. An exclusive lock will fail if there are any other locks of either type. Shared
locks require only read access to the LOCK file, but an exclusive lock requires read-write
access.

lvfind will release the lock only after reading all VDL files, including those from the
data/vfind/vdl.list VDL list file plus any others specified using --vdl=, --vdlc=, etc. command-
line options.

lvfind simply waits up to 60 seconds (--sleep-time option) and then exits, it does not read any
VDL files or scan any input data. It prints the process id to stderr (as though --pid was
specified) to facilitate killing it.

The default values for command-line options are equivalent to specifying:

lvfind --lock-retries=60
lvfind --lock-retries=60 --sleep-time=60

If locking fails due to interfering locks, it is retried up to 60 more times (--lock-retries option),
with a one second delay between attempts. The locking could fail, for example, if a VDL
update process is started while an lvfind process holds a shared lock. If the locking fails due
to some reason other than interfering locks, that is a fatal locking error; lvfind will set the
VFind error flag, give up on the locking, and continue; lvfind will just exit.
After 60 failed locking attempts (--lock-retries option), lvfind will set the VFind error flag and
give up, continuing with the rest of the program; but lvfind will just exit.

VSTK Manual 5th Edition 56 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

RESTARTING

VFind will restart using execvp() when receiving signal SIGHUP. This is useful with the -i,
ignore-eof option when running VFind as a daemon, to restart after updating VDLs. VFind
should only be restarted when input is at EOF, otherwise stdio buffering can cause a loss of
data and/or SmartScan desyncronization.

NOTES

By default, CyberSoft does not install a path for execution. So a path will either need to be
enabled, or use the full path when running the command.

FILES

$VSTK_HOME/LICENSE
$VSTK_HOME/data/vfind/vdl.list

SEE ALSO

VFind, VFindD, VDLC, UAD, CIT, THD, BHead, JDIS, find, dd, grep, CVDL

BUGS

Please report all bugs to support@cyber.com. Make sure to include the version of VFind, the
platform and OS, the script or command used, the complete output showing the bug, a short
description of the problem, and contact information.

COPYRIGHT

Copyright 1991-2017 by CyberSoft, Inc. All rights reserved.

CyberSoft, Inc. May 2017 VFind

VSTK Manual 5th Edition 57 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

VFindC (Client) Command Line Options

NAME

vfindc - Heterogeneous Antivirus Client

SYNOPSIS

vfindc
[-c, --copyright]
[-h, --help]
[-v, --version]
[--vlist]

vfindc
[-e, --exit-on-error]
[--end]
[--notell=<value>]
[--notells=<value>]
[--noscan=<value>]
[--noscans=<value>]
[--force-scan]
[--recursion-limit=<value>]
[--follow-symlinks]
[--ignore-symlinks]
[-l, --localhost]
[-p, --per-file]
[--pid]
[--quiet=<value>]
[--quit]
[--rcf=<value>]
[--pidfile=<value>]
[--savepid=<value>]
[--stdin]
[--uad=<value>]
[--server=host[:port]]
[-4, --IPv4]
[-6, --IPv6]
[--vexit]
[--#=<value>]
[--]

VSTK Manual 5th Edition 58 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

DESCRIPTION

VFindC is a client that attaches to VFindD, and scans for a host of malware targeting
Windows, UNIX, Linux and other systems, including denial of service attacks, back door
attacks, hostile java applications and applets, OLE/VB5 macro viruses, and common hacks.

OPTIONS

-c, --copyright
Display copyright information and then exit. All other options will be ignored.

-h, --help
Display usage message and then exit. All other options will be ignored.

-v, --version
Display version information and then exit. All other options will be ignored.

--vlist
This option causes VFindC to print to stdout a list of all viruses for which it currently scans.

-e, --exit-on-error
Exit immediately after encountering any kind of error or warning condition. Normally,
VFindC prints a warning message and attempts to continue processing after encountering a
non-fatal error, such as a syntax error in a VDL description.

--end
Used to exit VFindC while in Interactive mode.

--notell=<value>
This option provides a way to turn off reporting of individual viruses. This may be useful if a
site gets a large number of false positives for some particular virus due to the type of data.
<value> is the name of the virus as it appears after "VIRUS ID: " in VFindC's output, for
example: --notell="CVDL W32/Sircam.a".

--notells=<value>
This option provides a way to specify multiple notell parameters in a file. <value> is a file
that contains valid virus parameters as described in the notell option.

--noscan=<value>
This option provides a way to turn off scanning of particular files or directories. This may be
useful when scanning disks containing e.g. quarantined viruses or virus scanner configuration
files. If the name contains a ‘/’ (forward slash) character, it is matched against the full name
of the scanning target, otherwise, it is matched only against the final component, after the final
slash.

VSTK Manual 5th Edition 59 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

--noscans=<value>
This option provides a way to specify multiple noscan parameters in a file. File <value> is a
file that contains file or directory names as described in the noscan option.

--force-scan
Force scanning of the compiled VDL data file. This file is normally not scanned, as it would
be very slow, and produce a large amount of false hits. The file is instead protected by a
cryptographic checksum; any modifications to the file are reported as hits on the "Forgery.1"
virus id.

--recursion-limit=<value>
Maximum depth to recursively scan directories, negative for unlimited (the default), or zero to
not scan directories at all.

--follow-symlinks
If this flag is given, VFindC will follow symbolic links pointing to directories; otherwise, such
links are ignored. This option should be used with precaution, as loops in the directory
structure can make VFindC unable to scan all files.

--ignore-symlinks
If this flag is given, VFindC will not follow symbolic links pointing to regular files, otherwise,
such links are followed and the file scanned as usual. Setting this may be useful e.g. to limit
scanning to a locally mounted file system.

-l, --localhost
Assume that the VFind Daemon has access to the same file system as the client. This allows
the client to pass files by name to the daemon, rather than copying them over the network,
which may affect performance somewhat.

-p, --per-file
Display the number of possible virus infections for each file.

--pid
Print process id to stderr. See also –pidfile.

--quiet=<value>
This command provides a way of suppressing some of VFindC's verbosity.

0:The default behavior.
1:Suppress the “enter filename” prompt.
2:Suppress the “checking file” output.
3:Suppress all per-file output, including virus detections.

--quit
Used to exit VFindC while in Interactive mode.

VSTK Manual 5th Edition 60 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

--rcf=<value>
Run Control File. Tells VFindC to read additional command-line arguments from file.

--pidfile=<value>
Save process id to file.

--savepid=<value>
This option is available for backwards compatibility only, and is scheduled to be removed in a
future release.

--stdin
Use the data on standard input as the file to scan. This will be treated as a file called "-".

--uad=<value>
Instructs VFindD to run UAD as a sub-process with the specified command-line opts which
will be passed to UAD in addition to -ssw and -s. Thus, UAD will read file names from
standard input and write SmartScan output to VFindD.

Note: UAD runs on the server with VFindD, not with the client.

--server=<value> [:port]
Connect to the VFind Daemon on the specified host and port. It is possible to use this option
more than once, to spread the scanning load over multiple hosts. By default, VFindC connects
to the local host on port 8081.

-4, --IPv4
Connect to the server using internet protocol version 4. If not specified, the client will use
both IPv4 and IPv6, if available.

-6, --IPv6
Connect to the server using internet protocol version 6. If not specified, the client will use
both IPv4 and IPv6, if available.

--vexit
This option causes VFindC to return a known value on exit. With this option VFindC will
return 0 if no viruses were detected. In the event that a virus has been detected, VFindC will
return 23. This functionality is useful when integrating VFindC in a script or other program.
The return values cannot be changed from the defaults (23 and 0).

--#=<value>
Stop scanning a file after finding <value> viruses, e.g. --#=1 will stop after finding 1 virus.
Note that # starts a comment in the Unix Bourne shell, so this option may have to be specified
in quotes: '--#=1'

VSTK Manual 5th Edition 61 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

--
End of Options: Signals to VFindC that all remaining arguments are to be treated as filenames,
even if they start with '-'.

USAGE

INPUT

VFindC can be run in three ways.

1. Interactive mode:
Running VFindC without any file arguments (or other input such as SmartScan and stdin) will
result in a prompt asking what file to scan.
Example:

$ vfindc

2. Batch mode:
VFindC can be invoked with a list of files (or other input such as SmartScan or stdin). In this
mode, VFindC will scan all of the targets and write a report to stdout. This mode is useful
when scanning many files or directories.
Example:

 $ vfindc *.doc *.exe

3. Automated mode:
VFindC can be run from a script, batch file, or other application and be scheduled using UNIX
cron or a similar program. To run in this mode simply create a VFindC command and place it
in the appropriate place in the script, batch file, or application. When this mode is invoked,
VFindC will run unattended and generate a report to stdout. This report can be redirected to a
file, emailed, or otherwise processed. This mode of operation is useful when scanning a large
amount of data on a regular basis.

OUTPUT

VFindC's output can be very verbose at times. In order to cut down the output CyberSoft
recommends using the choke method.

The choke method is as simple as piping the output from VFindC into grep, or a similar tool.
Each line of output from VFindC starts with a chevron as follows:

VSTK Manual 5th Edition 62 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Chevron Meaning

##==>Informational Message
##==>> VFindc Warning
##==>>> Serious VFindc Condition
##==>>>> Possible Virus Detection

Example:

$ vfindc / | grep '##==>>>>’ REPORT

The above example would only show errors and virus detection messages.

CUSTOM MESSAGES

The current version of VFindC does not support Custom Messages (see VFind); VFindC
output is worded for virus scanning only. Support for custom messages in VFindC may be
added in a future release.

SMARTSCAN

The current version of VFindC does not support SmartScan streams; file typing and extraction
using UAD can instead be achieved using the --uad= flag.

LOCKING

VFindC does not provide any locks against multiple access. To update files while VFindD is
scanning them, the files should be copied/untarred first with a different name, and then
renamed to their correct name. This will assure that VFindC can not read a file before it's
complete.

RESTARTING

VFindC does not support restarting using SIGHUP.

FILES

$VSTK_HOME/LICENSE

SEE ALSO

VFind, VFindD, UAD

VSTK Manual 5th Edition 63 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

BUGS

Please report all bugs to support@cyber.com. Make sure to include the version of VFindC, the
platform and OS, the script or command used, the complete output showing the bug, a short
description of the problem, and contact information.

COPYRIGHT

Copyright 1991-2017 by CyberSoft, Inc. All rights reserved.

CyberSoft, Inc. May 2017 VFindC

VSTK Manual 5th Edition 64 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

VFindD Daemon (AKA Turbo) Command Line Options

NAME

vfindd - Heterogeneous Antivirus Daemon

SYNOPSIS

vfindd
[-c, --copyright]
[-h, --help]
[-v, --version]
[--vlist]
[--md5=<value>]
[--md5-disable]

vfindd
[-d, --dup-check]
[--trig-count]
[-e, --exit-on-error]
[-ev, --exit-on-vdl-error]
[-f, --foreground]
[--user=username]
[-i, --ignore-eof]
[-4, --IPv4]
[-6, --IPv6]
[--jadevdl=<value>]
[--tmpdir=<value>]
[--keep-tmpfiles]
[--libon=<value>]
[--liboff=<value>]
[-l, --localhost]
[--cbayes=<value>]
[--noload=<value>]
[--noloads=<value>]
[--pid]
[--quiet=<value>]
[--rcf=<value>]
[--pidfile=<value>]
[--savepid=<value>]
[-sst, --smartscan-types]
[-nosst, --no-smartscan-types]
[--vdl-list=<value>]
[--vdl=<value>]

VSTK Manual 5th Edition 65 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

[--vdlc=<value>]
[--vdlm=<value>]
[--vdl-data-file=<value>]
[--max-vdl-data-size=<value>]
[--rebuild-vdl-data]
[--svsp-port=<port>]
[--smtp-in-port=<port>]
[--smtp-out-port=<port>]
[--smtp-out-host=<hostname>]
[--vfdclam-port=<port>]
[--vfdclam-mailscan]

vfindd-mt
[--threads=<value>]

DESCRIPTION

VFindD is a heterogeneous virus scanning daemon that simultaneously scans for a host of
malware targeting Windows, UNIX, Linux and other systems, including denial of service
attacks, back door attacks, hostile java applications and applets, OLE/VB5 macro viruses, and
common hacks. The daemon runs in the background and accepts SVSP, SMTP, and CLAMD
connections.

Note: In the current version, the SVSP SCAN command is only implemented in its
SCAN/FILE form.

OPTIONS

-c, --copyright
Display copyright information and then exit. All other options will be ignored.

-h, --help
Display usage message and then exit. All other options will be ignored.

-v, --version
Display version information and then exit. All other options will be ignored.

--vlist
Print to stdout a list of all viruses VFind scans for.

--md5=<value>
Read additional md5 signatures from the specified file.

VSTK Manual 5th Edition 66 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

--md5-disable
Disable the MD5-engine when VFind/VFindD starts.

-d, --dup-check
Check for duplicate VDL names and definition and other potential problems. With this option
enabled, duplicates will be reported as parser errors. Also, any VDL segment which starts
with an offset range or .* operator will be reported as a parser error. An offset at the
beginning of a VDL segment is allowed by the CVDL syntax, but does not make sense to use,
and may cause the VDL to run very slow.

--trig-count
Lists the names of any VDLs that could not be indexed for speed, and also the trigger and run
counts for all VDLs. In general, only simple VDL constructs can be indexed, and only
constructs containing strings of four or more bytes. Having many non-indexed VDLs, or
VDLs with excessive trigger hit counts, will make VFindD run significantly slower.

-e, --exit-on-error
Exit immediately after encountering any kind of error or warning condition. Normally,
VFindD prints a warning message and attempts to continue processing after encountering a
non-fatal error, such as a syntax error in a VDL description.

-ev, --exit-on-vdl-error
Exit immediately after encountering any kind of error related to processing of VDL files.
Normally, VFindD prints a warning message and attempts to continue processing after
encountering a non-fatal error, such as a syntax error in a VDL description.

-f, --foreground
Stay connected to the controlling terminal, do not fork a background process.

--user=<username>
Run VFindD as the specified user. This option is ignored on the MS Windows platform, and
otherwise only available when VFindD is started by the superuser.

-i, --ignore-eof
Do not close the input stream after encountering EOF, but continue to read file names or
SmartScan input.

-4, --IPv4
Listen for connections using internet protocol version 4. If not specified, the server will use
both IPv4 and IPv6, if available.

-6, --IPv6
Listen for connections using internet protocol version 6. If not specified, the server will use
both IPv4 and IPv6, if available.

VSTK Manual 5th Edition 67 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

--jadevdl=file
Load additional virus signatures from file. File contains VDL models for hostile java applets
and applications.

--tmpdir=dir
Directory to store temporary files in.

--keep-tmpfiles
Do not remove temporary files when done.

--libon=<value>
Turn on the specified library. VFindD will list the available libraries on startup. Some
libraries are turned off by default..

--liboff=<value>
Turn on the specified library. VFindD will list the available libraries on startup. Most
libraries are turned on by default.

-l, --localhost
Listen for connections on the local host loopback interface only. Without this, the server will
listen on all interfaces.

--cbayes=<value>
Read additional cbayes data from file.

--noload=<value>
Disable loading the specified VDL. This may be useful if the scanned data contains a large
amount of false positives for some particular virus. <value> is the name of the virus as it
appears in the VDL file, for example:--noload="W32/Sircam.a"

--noloads=<value>
Disable loading the VDLs listed in the specified file. Each line of the file should contain the
name of a virus as specified for the --option. Leading and trailing white-space is ignored, as
are empty lines, and comment lines beginning with ‘#’.

--pid
Print process id to stderr. See also --pidfile.

--quiet=<value>
This flag is available for backwards compatibility only, and may go away in a future release.

--rcf=<value>
Read additional command line arguments from rc file.

VSTK Manual 5th Edition 68 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

--pidfile=<value>
Save process id to file.

--savepid=<value>
This option is scheduled to be removed in a future release. Use --pidfile instead.

-sst, --smartscan-types
Displays file types and any VDL's skipped due to file type restrictions.

-nosst, --no-smartscan-types
Disables skipping any VDLs due to file type restrictions. VDL file type restrictions will be
ignored and all VDLs will be applied to all file types.

--vdl-list=<value>
Read the VDL library list from the specified file instead of from
$VSTK_HOME/data/vfind/vdl.list. Must be the first command-line option if used because it
must be processed before other options like --libon= which require the VDL library list file to
have already been read. Note that the VDL files specified in the VDL library must be in the
$VSTK_HOME/data/vfind/ directory.

--vdl=<value>
Read additional virus descriptions from the specified file.

--vdlc=<value>
Read additional case insensitive virus descriptions from the specified file.

--vdlm=<value>
Read additional meta virus descriptions from the specified file.

--vdl-data-file=<value>
File to store compiled VDL data in for faster startup. If not specified,
$VSTK_HOME/data/vfind/ac.dat is used.

--max-vdl-data-size=<value>
Maximum allocated size of the compiled VDL data file.

--rebuild-vdl-data
Force recompilation of VDL data. By default, the file is compiled only when the VDL
configuration has changed.

--svsp-port=<port>
Specifies which port VFindD should listen to for SVSP connections. If not given, it will use
TCP port 8081 by default. If the port is given as an empty string (“”), VFindD will not accept
SVSP connections.

VSTK Manual 5th Edition 69 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

--smtp-in-port=<port>
Specifies which port VFindD should listen to for SMTP connections. If not given, VFindD
will not accept SMTP connections.

--smtp-out-port=<port>
Specifies which port VFindD should send SMTP results to. If not given, VFindD will use a
port numbered one more than the one specified by --smtp-in-port.

--smtp-out-host=<hostname>
Specifies which host VFindD should send SMTP results to. If not given, VFindD will send
data back to the originating host.

--vfdclam-port=<port>
Specifies which port VFindD should listen to for CLAMD connections. If not given, VFindD
will not accept CLAMD connections.

--vfdclam-mailscan
Treat scanned files as email.

--threads=<value>
Specify maximum number of threads (default=1). Only the multi-threaded VFindD
executable VFindD-MT support use of multiple threads.

USAGE

INPUT

VFindD runs as a background daemon, accepting connections by TCP and Unix sockets.

OUTPUT

VFindD doesn't produce much output; output is instead expected from any client connecting to
the daemon. When running in the background (normally, without --foreground), any output
from VFindD can be found in:

$VSTK_HOME/var/vfindd.log.

LOCKING

VFindD does not provide any locks against multiple access. To update VDL files on the fly,
the files should be copied/untarred first with a different name, and then renamed to their
correct name. This will assure that VFindD can not read a file before it's complete.

VSTK Manual 5th Edition 70 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

RESTARTING

VFindD will restart using execvp() when receiving signal SIGHUP. This is useful to restart
after updating VDLs. VFindD should only be restarted when it is idle, otherwise stdio
buffering can cause a loss of data and/or SmartScan desyncronization.

CLAMAV CLAMD COMPATIBILITY

The VFind Daemon supports the interface for the ClamAV's CLAMD daemon, it recognizes
SCAN, CONTSCAN, RAWSCAN, STREAM, SESSION, and END requests. The CLAMD
interface usually listens on a UNIX socket at /tmp/clamd.

VFIND EXAMPLE SCRIPT: cit_uad_VFind_lb.Sh

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~
#!/bin/sh

#

# Name: cit_uad_VFind_lb.sh

#

# Copyright: 2003, 2004, 2005, 2006 CyberSoft Operating Corporation, All Rights Reserved.  

#

# Description: This is a general script that will demonstrate how to run the CIT, UAD 

# and VFind programs using the SmartScan protocol and the Loop-back tools.  

# The find command options may need to be changed to properly scan your system.  

# The uad --recursion option is set to 25 to limit the levels of recursion for expanding

# archive files.  This may need to be altered for your system.  

#

VSTK_HOME=<vstk_home>

export VSTK_HOME

VFind=VFind

VPATH=/

VOPTS=

COPTS=

UOPTS=

mflag=

pflag=

vflag=

uflag=

cflag=

while getopts m:p:v:u:c: name

do

case $name in

VSTK Manual 5th Edition                                    71 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

m)

mflag=1

mval=$OPTARG

;;

p)

pflag=1

pval=$OPTARG

;;

v)

vflag=1

vval=$OPTARG

;;

u)

uflag=1

uval=$OPTARG

;;

c)

cflag=1

cval=$OPTARG

;;

?) printf "Usage: %s [-m <number of threads>] [-p <path>] [-v 'VFind options'] [-c 'cit options'] [-u 'uad 
options']\n" $0

exit 1

;;

esac

done

if [ ! -z "${mflag}"-a-x ${VSTK_HOME}/programs/VFind-mt ]; then

VFind=VFind-mt

NUM_THREADS=${mval}

fi

if [ ! -z "${pflag}" ]; then

VPATH=${pval}

fi

if [ ! -z "${vval}" ]; then

VOPTS=${vval}

fi

if [ ! -z "${uflag}" ]; then

UOPTS=${uval}

fi

if [ ! -z "${cflag}" ]; then

COPTS=${cval}

fi

VSTK Manual 5th Edition                                    72 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

PATH=/usr/bin:/usr/sbin:/bin:/sbin:$PATH

export PATH

.$VSTK_HOME/bin/_config.sh

if [ ${VFind} = "VFind-mt" ]; then

find ${VPATH} ${FIND_FLAGS} -type f -print | \

$VSTK_HOME/bin/cit${COPTS} | \

$VSTK_HOME/bin/lbh -db=lb.db | \

$VSTK_HOME/bin/${VFind} --threads=${NUM_THREADS} --uad="--recursion 25 ${UOPTS}" –exit-on-vdl-
error ${VOPTS} | \

$VSTK_HOME/bin/lbt -db=lb.db -r=4

else

find ${VPATH} ${FIND_FLAGS} -type f -print | \

$VSTK_HOME/bin/cit ${COPTS} | \

$VSTK_HOME/bin/lbh -db=lb.db | \

$VSTK_HOME/bin/uad --recursion 25 -s -ssw ${UOPTS} | \

$VSTK_HOME/bin/${VFind} -ssr --exit-on-vdl-error ${VOPTS} | \

$VSTK_HOME/bin/lbt -db=lb.db -r=4

fi

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

FILES

$VSTK_HOME/LICENSE
$VSTK_HOME/data/vfindd/vdl.list
$VSTK_HOME/car/vfindd.log

SEE ALSO

VFind, SVSP

BUGS

Please report all bugs to support@cyber.com. Make sure to include the version of VFindD,
the platform and OS, the script or command used, the complete output showing the bug, a
short description of the problem, and contact information.

COPYRIGHT

Copyright 1991-2017 by CyberSoft, Inc. All rights reserved.

CyberSoft, Inc. May 2017 VFindD

VSTK Manual 5th Edition 73 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

CVDL Language

The CVDL language was first released to the public in VFind Version 4.0 in 1992. Using
the CVDL fuzzy logic afforded by proximity, Boolean and case control logic it is possible to
define one CVDL statement that can definitively locate all variations of a pattern, both
known and unknown. In the terms of a computer virus this means that one VDL statement
can be created that can detect more than one type of virus. In 2004 the CVDL language was
expanded to include all of the “extended regular expressions (regex)”.

One CVDL definition is called a “VDL statement” or just “VDL” for short. A collection of
two or more statements is called a VDL program. VDL programs are sometimes referred to
as VDL files.

A full explanation of the CVDL language is provided later in this manual.

Computer Viruses

Here are the facts:

1. Computer viruses are real. They exist. Some people believe they do not exist.

2. If a computer is infected, it may not be apparent just be using it. Often, it requires an anti virus
or integrity product to know if a system is infected.

3. Viruses travel in vectors. An open vector is an invitation and may result in a system infected
with several different viruses simultaneously.

4. Computer viruses are a threat. The threat is proportional to the value of the system and the
attached network.

5. The direct cost of a virus infection is proportional to the cost of restoring the system and the
number of systems that must be restored. The indirect costs may be higher.

6. Computer viruses can bring down a network, including the Internet, by clogging it or by
attacking the routers that operate the net.

7. Computer viruses are not created by the anti-virus industry.

8. One infected computer can damage the bandwidth of a network if the network is not configured
with security in mind.

9. There are numerous viruses that were created over the course of many years, but in reality there
are significantly less than the industry tries to make people believe there are. There are several
reasons for this including the fact that many of the older viruses will not run on modern
computers or the viruses require a transport format that is essentially obsolete, such as boot
sector viruses and floppy diskettes. There is also the fact that some anti-virus companies will
search for viruses that are moot. This is done solely for marketing reasons.

VSTK Manual 5th Edition 74 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Super Critical Systems and Anti-Virus

In May 1995 Peter Radatti published a paper entitled Anti-Virus for Multimedia Publishers.
This paper was likely the first time anyone proposed using more than one brand of anti-virus
program on the same system. In fact, the paper suggested using three. Today this is a
common practice on super critical systems.

The paper explained that each manufacture of anti-virus makes different trade-offs when
designing their products. These trade-offs are necessary in order to make the product usable.
Reference the law of diminishing returns. Peter suggested that super critical systems
required a higher set point for diminishing returns than a normal system. Consequently, he
also suggested using more than one manufacturers anti-virus and using multiple methods.
An example is to use three virus scanners by different companies, one integrity system and
one baseline control system. The more critical the system, the more tools and methods
should be implemented. All phases of this concept, except for the multi-vendor idea, can be
implemented using the standard VSTK products. Be careful that some manufacturers tools
may not work well together.

In addition to the idea of multi-vendor products protecting the same system this paper also
presented the CyberSoft Half Dozen Rules of Anti-Virus Common Sense. Here is an
updated version:

CyberSoft Half Dozen Rules of Anti-Virus Common Sense
1. Always virus scan new software prior to installation. Especially true of Internet downloads.

2. Scan the system with a cryptographic hashing tool. Do this prior to an infection so changes
can be detected.

3. Scan the system and use the integrity system often, at a minimum daily. Update the virus
definitions daily or more often.

4. Use the keyboard or screen lock to keep people out of unattended systems.

5. Scan files copied from other systems prior to use.

6. Backup systems often. Destroyed data can be retrieved if it has been archived.

Lexical Analysis using VFind’s CVDL

The objective of this paragraph is to introduce CyberSoft’s approach of meeting the
challenging lexical pattern analysis demands common in today’s complex world. There is
an additional manual which goes into full detail on this subject later in this handbook. All
lexical analysis discussed in this chapter is done by VFind simultaneously to scanning for
viruses.

VSTK Manual 5th Edition 75 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Accommodating for dynamic patterns such as the example below cannot be met by
conventional scanning methodologies. This is an important consideration when scanning
messages for the medical field, for example, where the word Viagra can be found in
legitimate communication. Using CVDL matching dynamic unsolicited messages becomes
an attainable reality while bypassing messages that are most likely routine correspondence.

One feature of the CVDL language that contributes to the successful creation of dynamic
pattern analysis is the ability to go beyond matching individual words and phrases. An
analyst is able to expand upon Boolean expression logic utilizing an array of CVDL
functions. Some of these functions may be seen in the example below.

Consider an e-mail message containing suggestive Viagra text such as:

“Click here to get your sample of¥ 1ÄGR@”

The use of the CVDL language in the example below will find the word “click” regardless
of case, and the word “Viagra” with any character substitution as defined in the macros for
A, I, and V around “g” and “r”, within two characters of one another. This allows the
detection of the word Viagra even when it only appears to be “Viagra”. False Matches are
prevented by the NOT ~"viagra" (note the correct spelling) command at the outset of the
VDL, and the WP1 (one or more white space or punctuation characters) surrounding the
“viagra” alternative.

$define letterA "Aa@ÀÁÂÃÄÅàáâãäå"

$define letterI "Ii1;!¡¦ÌÍÎÏìîïlï|:"

$define letterV ({"Vv¥"} | ~"\/")

:SPAMVDL, NOT ~"viagra" AND~"click" AND WP1,$letterV,@-2,{$letterI},@-2,
{$letterA},@-2,~"g",@-2, ~"r",@-2,{$letterA},WP1 # ; Matches Viagra language with
special characters.

This sole Viagra example provides a glimpse of CVDL practicality in pattern matching. Its
simple yet sophisticated approach provides a unique combination of tools to match the most
dynamic of patterns while minimizing the possibility of false matches. The use of macros
provides an additional edge not found in conventional scanning engines.

The CVDL language is a work in progress as it has been for over the last fifteen years.
Cybersoft is constantly adding new constructs to the language in order to solve complex
problems. This is because the problem of lexical analysis is becoming more and more
difficult. The original driving force behind the lexical analysis using CVDL was dirty word
checking used by the government and industry.

VSTK Manual 5th Edition 76 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Think of words and phases such as “TOP SECRET” or “COMPANY PROPERTY”. As an
example of a lexical problem in the extreme, that is in itself an explanation of the problem,
read the following paragraph:

Aoccdrnig to rscheearch at an Elingsh uinervtisy, it deosn't mttaer in waht oredr the ltteers
in a wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteer is at the rghit pclae.
The rset can be a toatl mses and you can sitll raed it wouthit a porbelm. Tihs is bcuseae we
do not raed ervey lteter.

The prior paragraph has been circulating on the Internet as a joke. If the point of the
paragraph was not understood, then go back and look at the spelling. A certain percentage
of people will read that paragraph without noticing most of the spelling “errors”. The ability
of the mind to “fill in what is not there” very well defines some of the problem of lexical
analysis. The CVDL language is very well suited to these kind of problems.

VSTK Manual 5th Edition 77 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

MVFilter

The MVFilter program disinfects OLE documents (Microsoft Word, Excel and PowerPoint)
from macro viruses (both VBA and Word Basic). It does this in the same way that all anti-
virus programs disinfect macro viruses, by removal of all of the macros. The difference is
that MVFilter was designed as a tool and most significantly, the way in which it removes the
macro. Very often, anti-virus programs can detect a virus infection in a program that was
disinfected by a different manufactures program. This is because the virus is actually left
intact but disabled. A few bytes of the virus code is changed so that the disinfecting anti-
virus product will not detect the disabled virus. The most common way of disabling a virus
is to flip the “erase” bit. The virus is still intact but will not execute since it was disabled.
Since each manufacture determines which bytes to change these bytes may not overlap.
Consequently, Norton might detect a virus in a sample disinfected by McAfee. This
problem is called a “ghost virus”. MVFilter does not have this problem because it totally
removes the virus by zeroing out the entire virus and virus macro name from the table of
objects. There is nothing for another virus scanner to detect.

As such, MVFilter can be used for compartmentalization purposes in addition to its reactive
disinfection role. As a compartmentalization tool, MVFilter can be used to proactively
prevent all macro virus infections, including new unknown infections, by automatically
stripping all macros from OLE documents as they enter a system. This is a reasonable
policy since it provides 100%, infallible protection in exchange for losing the ability to use
macros. Since very few people use macros, this should not be troublesome. Users who need
macros can use authorized methods to allow the macros they need while still preventing
damage from unauthorized macros.

A second use for MVFilter is as part of a document warehouse archival and management
system such as Documentum*. MVFilter has been successfully interfaced and operating
with these systems for years. Generally, these systems manage hundreds of thousands to
millions of critical documents. MVFilter automates the process of document baseline
control by providing a consistent format, free of all macros, in addition to preventing
attacks.

In the future the MVFilter program will be enhanced to deal with XML documents.

VSTK Manual 5th Edition 78 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

MVFilter Command Line Options

NAME

mvfilter - Microsoft Word (and other OLE2) Macro Stripper

SYNOPSIS

mvfilter
[-t extension file]
[-v]
[-i]
[-s <extension>]
[-n]

DESCRIPTION

MVFilter examines its file argument and strips the VBA Macros or the Pre-VBA Macros from
the file. The Original file is backed up in a file named with a .bak extension unless a different
extension is specified with the -s argument. For example, foo.doc will be backed up as
foo.bak.

OPTIONS

-t
Tests the file to see what type of Macros are present.
NOTE: Disinfection is NOT performed using this option.

-v
This option displays the version.

-i
This option will display information.
NOTE: Disinfection is NOT performed using this option.

-s <extension>
Use extension instead of `.bak' for back-up files.

Example:

$ mvfilter -s aaa foo.doc

VSTK Manual 5th Edition 79 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

-n
This option will NOT write a backup file.

EXIT VALUES

MVFilter returns different error codes based on what actions have been performed or what
errors have occurred. It returns:

30 if VBA Macros were disinfected.
31 if Pre-VBA Macros were disinfected.
40 if disinfection was not completed.
80 if Input File was not opened.
81 if File has an invalid header.
82 if Backup file could not be opened.
98 if an invalid command line option is entered.
99 if No valid license key was found.

In Addition to the codes listed above, the MVFilter returns the following values when the -t
(test) option is supplied:

10 if VBA Macros were found.
11 if Pre-VBA Macros were found.
20 if No Macros were found.

MVFilter Script Example

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#!/bin/sh

#

# Name: mvfilter.sh

#

# Copyright: 2003, 2004, 2005, 2006 CyberSoft Operating Corporation, All Rights Reserved.  

#

# Description: This is a general script that will demonstrate how to run the MVFilter program.  

#

PATH=/usr/bin:/usr/sbin:/bin:/sbin:$PATH

export PATH

VSTK_HOME=<vstk_home>

export VSTK_HOME

$VSTK_HOME/bin/mvfilter $1

VSTK Manual 5th Edition                                    80 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

SEE ALSO

VFind

BUGS

Please report all bugs to support@cyber.com.  Make sure to include the version of MVFilter, 
the platform and OS, the script or command used, the complete output showing the bug, a 
short description of the problem, and contact information.

COPYRIGHT

Copyright  1997-2017 by CyberSoft, Inc.  All rights reserved.

CyberSoft, Inc.  May 2017 MVFilter

VSTK Manual 5th Edition                                    81 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

CIT- Cyrptographic Integrity Tool

CIT is a Cryptographic Integrity Tool.  It provides many features, some of which are to 
identify files which have been:

Primary Features of CIT File Analysis
Modified

Added

Deleted

Duplicated

Dangerous (via hash identification)

MD5 Hash Code Creation

CIT and VFind are very special tools in that a great deal more can be accomplished with 
them than meets the eye.  It is always reasonable to consider these two tools when trying to 
solve a computer security problem.  One of the overlooked features of CIT that is often 
valuable is that it is an intelligence gathering, reduction and analysis system.  Using CIT,it 
is possible to identify what has happened in a system as reflected in its file system.  Knowing  
what has happened in a system also reveals what people have been doing in the system.  
Remember a computer system is its file system, not the hardware!

CIT has multiple uses and can tighten baseline configuration control down to a single bit or 
be used with surgical precision on an entire system or single file.  The CIT tool produces a 
database of cryptographic hash values for every file it is directed to manage.  In normal 
operation, this is every file on the system with the exception of special files like /dev, FIFO 
and proc files.  The /dev files should not be scanned except explicitly.  Otherwise every 
device on the system will be scanned several times.  The FIFO and proc files are never 
ending.  If a user starts to scan one of these they will be stuck.  Once the database is 
produced, it will report on every file that has been modified, added, removed, duplicated or 
otherwise noted as dangerous.  It can also be utilized to locate any known file by the file's 
hash signature, after the fact.  Additionally, it produces a target opportunity list of all files 
that have been added or modified on the system for virus scanning by VFind.  When utilized 
with LBH (Loop Back Head) and LBT (Loop Back Tail), which provides a feedback loop 
for infected files, it allows rapid virus scanning of a system without the danger of missing 
content.  Files which are known to be clean and have not changed do not need to be scanned 
a second time.  

VSTK Manual 5th Edition                                    82 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

One unexpected example of how to use the Duplicated section of the CIT report is to 
identify users who have made unauthorized copies of repositories, copied other user's work 
or are wasting disk space by keeping duplicate copies of central libraries.  In the case of the 
libraries, the report from CIT can be used to drive a script replacing the library files with 
logical links to the central library.  On some systems this has saved a significant amount of 
space while ensuring that everyone was using the latest version of the approved libraries.  

Cit as a Baseline Control Tool

CIT is also the best Baseline Configuration Control (BCC) tool.  It allows the security officer 
to rapidly detect BCC problems.  Since all changes to a system are tracked, it becomes a trivial 
effort to detect baseline configuration problems.  This is especially true if a hacker breaks into 
a system or an authorized user makes unauthorized changes.  It can even detect changes 
caused by hardware degradation or outside electronic forces such as magnetic pulses or 
radiation.  One more benefit of using CIT as a BCC tool is that it becomes possible to 
diagnose and correct configuration problems with computers in a substantially shorter period 
of time than would be possible without the tool.  

Cit Detects Bad Behavior of Users

Another use for CIT is personnel monitoring.  A trained security officer can determine a 
great deal about the user activity on a system by examining CIT reports.  It is usually 
possible to tell if a user is not doing their job or is attempting to tamper with the system 
baseline configuration.  The following example highlights this feature.  (Note this report is 
not real.  It was formatted for this document and is representational.  In addition, while there 
are stealth cloak programs, there is no hack66 program.) 

Representational Output of CIT (CIT.RPT)

Added Files:Modified Files:Deleted Files:

/home/george/abc.c/home/george/main.c/home/harry/a.c

/home/george/def.h/home/george/a.c/home/harry/c.c

/home/harry/xyzzy.c/home/george/b.c/home/harry/1.c

/home/harry/567.c/home/george/c.c/home/harry/2.c

/home/harry/xyz.jpg/home/harry/123.c/home/harry/3.c

/home/harry/report.txt/var/adm/sulog

/var/log/uucp/Log/var/mail/horse

VSTK Manual 5th Edition                                    83 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

Duplicate Files:

/home/george/abc.c with /home/harry/567.c

/home/george/def.h with /home/harry/xyz.jpg

/home/george/main.c with /home/harry/report.txt

Danger Files:

/tmp/123ac96fcis “stealth cloak program hack66”

When a security analyst views the example just given, the first call made should be to have 
Harry removed from the building.  The second call should be to convene an emergency 
meeting.  Why? A little more information needs to be gathered but it is now known that 
Harry deleted all of the work he did, copied work from George, which he should not have 
done, and was attempting to hide the fact that he copied files from George.  It can also be 
seen that George has been very busy doing his assigned task.  At first glance it appears that 
Harry is at worse a spy, or a malcontent, or at best, someone that is breaking the rules by 
nosing around the system and attempting to hide the fact.  A detailed examination of the file 
contents along with other standard security investigation methods will reveal if this is a false 
alarm.  If it is indeed a false alarm, then Harry is still showing behavior that is undesirable.  

Another piece of intelligence that was picked up on this report is the fact the 
/var/log/uucp/Log file was created.  This means that someone on that system was running 
the uucp command.  The uucp command was the primary method of moving email and files 
between systems prior to the invention of the network.  It also allowed users to execute 
commands on remote systems using email.  Since the use of uucp program on this system 
was unauthorized it appears to have been used as a back channel.  It should also be noticed 
that a mail file was modified for a user called horse.  Since there is no authorized user called 
horse, this raised a serious red flag.  The fact that it was modified means that it existed in the 
past and additional information can be gathered by viewing old CIT logs and system 
backups.  This is also an indication of what the unauthorized uucp connection was doing and 
the fact that another channel besides uucp may be in use since the uucp log was new while 
the mail file was already in existence.  

Yet another piece of information is that the /var/adm/sulog was modified.  The sulog file is a 
record of all attempts by users on the system to execute the su command.  Each time su is 
executed, an entry is added to the sulog file.  The su command gives someone the ability to 
switch user identities.  It is often used to become the system super user.  

VSTK Manual 5th Edition                                    84 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

CIT reported changes in system log files reveal which process have been executed and does 
so in a known time frame.  It is not necessary to utilize the highly malleable system time 
stamp on files, it is known that the detected activity took place in the window between CIT 
executions.  This is in addition to identifying saved email, edited files, database files that 
were modified, ensuring that files that must not exist (such as known Trojan horses or 
obsolete programs/documents) do not, and generally determining what is happening and not 
happening in the system.

One of the interesting things that is also revealed by this report is timing.  The system date 
and time logs are of little value since they can be easily modified to values in the past.  On 
the other hand, since CIT is run nightly it can be determined that modifications to the file 
occurred within the 24 hour period between runs.  Knowing the actual time window in 
which something happened is critical when doing an investigation.

Since the /var/log/uucp/Log was new but the /var/mail/horse was modified this indicates that 
this problem may be longer standing than it would appear at first glance.  Attempts to use 
the su command combined with CyberSoft’s other indicators can indicate that hacking 
attempts may have been in progress.  In fact, a starting guess would be that Harry already 
had a back door and was using an smtp transport to send/receive email but decided to add 
the uucp system.  The next suggested step would  be to investigate the file /tmp/123ac96fc 
which is identified as a “stealth cloak program”, hack66.  In addition, it could be guessed 
that Harry may not have had the root account password but was using some other method of 
getting control.  All of this information is based on the results of the CIT run shown above.  
It should also be noted that all of the past CIT logs are available on the backup tapes! A 
wealth of information on Harry’s past activities can now be learned with timing nailed down 
to 24 hour windows.  

Recap of why Harry needs to be removed from the building pending investigation
1. Harry deleted all of his work.  This was not authorized, and destruction of company property 

is normally a firing offense.  

2. Harry made unauthorized copies of George’s work.  This is suspicious.  

3. Harry tried to hide the fact he made copies of George’s work.  This is very suspicious and 
dishonest.  

4. Someone placed a known hacker tool on the system.  

5. Someone was using an unauthorized back channel communications tool on the system.  This 
is very suspicious.  

6. Someone has fully or partially penetrated security on the system as evident since they could 
execute uucp and either did or was planning on hiding their path using a known stealth tool.  

VSTK Manual 5th Edition                                    85 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

CIT Provides Media Integrity

Other uses for CIT include ensuring that the contents of a tape, disk or email attachment are 
what they are supposed to be.  By referring to a secure database of known CIT hash values, 
it is possible to determine if the contents have degraded or been modified.  This is extremely 
valuable when dealing with programs or critical documents distributed over a network or 
archived in offline storage.  It is a 100% reliable way of knowing what was sent, was what 
was received, and what the user thought was on removable media, is in fact, what is on the 
media.  The CIT hash values are one way traps.  It is not possible to determine the contents 
of a file by knowing the hash value unless the user already has a copy of the exact contents.  
This means that it is possible to securely distribute hash values over open channels such as 
fax or internet for even the most sensitive of documents.  

 

The output from CIT is highly formatted which allows it to be read by data reduction 
programs.  This means that CIT reports can be collected from very large networks into pools 
at central locations where data reduction techniques can produce an aggregate report.  
Aggregate reports of this type can reveal stealth attacks, including very hard to detect slow 
stealth attacks over a large number of systems.  This report can be used as a quick way to 
determine if a very large number of network attached computers remain true to their baseline 
configuration.  When operating in a hostile environment, this means that all of the computer 
equipment can be verified from one report as being correctly configured and operational.  
Systems which do not conform to the baseline configuration can be identified easily.  
Depending upon which options are selected, the central pool of CIT reports can also be 
utilized to locate a single file on one computer in a network of hundreds of thousands of 
computers.  

System Maintenance / Customer Support

One of the largest problems with customer support is overhead costs associated with a help 
desk.  These costs generally have nowhere to go but up.  CyberSoft’s studies have indicated 
that the bulk of a customer service call is spent doing diagnosis.  Generally, the end user 
does not know why their system is not working but they are sure they were not the cause.  
For a complex operating system such as Unix or Windows, this can take up to 2 hours to 
resolve.  Using CIT, a system can be baselined when it is installed and updated.  At anytime 
in the future if the system fails, the help desk can run CIT and it will reveal every file which 
has been added, deleted, modified, marked as a having dangerous content or is a duplicate of 
other files already on the system.  This can reduce the time for diagnoses to about 15 
minutes while the duplicate files feature can save significant amounts of disk space.  

VSTK Manual 5th Edition                                    86 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

An additional way of decreasing system maintenance and help desk support costs is to 
baseline systems.  Once a baseline is established a baseline CIT database can be created for 
each baseline.  When a system is malfunctioning not only can the engineer review the on-
system CIT reports but they can also run an audit against the CIT baseline database which 
will identify every way in which the system no longer conforms to the baseline.  

Forensic Evidence

Using CIT can provide significant amounts of forensic evidence of the activities on a 
system.  Every activity on a system leaves fingerprints.  CIT can be used as a data reduction 
method to find these fingerprints quickly.  This is especially useful when dealing with 
insider attacks that may be performed by disgruntled employees.  

If systems are under tight baseline configuration and control, then models of baselines can 
be created using CIT.  Any deviation from the baseline will be reported.  This is especially 
useful for auditing departments and if a system has never run CIT but has been in production 
for a long time.  

In a network, CIT can be used to ensure the contents of a file transmitted to another system 
is what was received.  There are many reasons why the file may be modified, but a quick 
check of the hash code on both ends ensures the accuracy of the data.  If the hash code is 
transmitted via a secondary channel then it can also be used to reveal third party tampering 
by a “man in the middle” attack.  

A related problem is the identification and verification of removable media, such as backup 
tapes.  Using CIT, create a hash of the entire contents of the tape.  That hash value can be 
used as the serial number of the tape and will also verify that the contents have not degraded. 

By using a little imagination this can be extended to all types of operations and can provide 
a new level of security for equipment in areas that are subject to content degradation such as 
hard radiation areas used in power plants, food processing and high orbit.  

VSTK Manual 5th Edition                                    87 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

CUSTOMER CASE STUDY

A customer case study demonstrates a typical use of CIT after a break in.  This part of the 
document was written by the customer with light edits for brevity and clarity.  

As an Internet Administrator whose main servers are Sun Unix systems, I always seem to be 
fighting that never ending battle of keeping crackers off my computers.  Even with the 
security patches, router access control and just simply phoning providers after finding 
someone suspiciously banging on our door, someone got in.  

One morning I tried to log into our main server after a long weekend and found that my 
terminal was booby trapped.  No matter what key I hit garbage was displayed.  I did a telnet  
into the server from another computer and looked around.  Using CIT I found that the 
/etc/rc* boot and other files were modified.  If I had rebooted the rc files would have taken 
effect giving the intruder more control.  I found all of the modified files using CIT and using 
a backup tape replaced them.  Using CIT it took 10 minutes to figure out where the intruder 
came from.  I must say that CIT has really made my life administering my systems easier.  
Besides saving my skin that day and using it other times to check for suspicious changes, I 
look at the output every day to give me an indication of what is going on in the whole 
system.  Great tool!

VSTK Manual 5th Edition                                    88 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

CIT Command Line Options

NAME

CIT - Cryptographic Integrity Tool

SYNOPSIS

cit 
[ -c, --copyright ]
[ -h, -?, --help ]
[ -v, --version ]

cit
[ -S, --stdin ]
[ --cleanup ]
[ --no-dangerfile ]
[ -db databasename, --database-name databasename ]
[ --dbpath databasepath ]
[ --overwrite ]
[ -d, --dupcontents ]
[ -do, --dupcontents-only ]
[ -f, --file-changed ]
[ -nb, --no-backup ]
[ -nc, --no-cleanup ]
[ -nr, --no-report ]
[ -nu, --no-update ]
[ -t tmp, --tmpdir tmp ]
[ -uo, --uniqcontents-only ]
[ -- ]

DESCRIPTION

CyberSoft, Inc.'s Cryptographic Integrity Tool is part of the VFind Security ToolKit.  An 
MD5 signature (i.e., a cryptographic hash code) is generated for each file and compared to a 
previous signature for that file stored in a database (by default, cit.db; this can be overridden 
with the -db option).  A list of new and modified files is written to standard output.  A report 
of new, modified and deleted files is placed in cit.rpt (by default; again, see the -db option).

VSTK Manual 5th Edition                                    89 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

OPTIONS

-c, --copyright
Display copyright information and then exit.  All other options will be ignored.

-h, -?, --help
Display usage message and then exit.  All other options will be ignored.

-v, --version
Display version information and then exit.  All other options will be ignored.

-S, --stdin
Display the MD5 hash of standard input on standard output.

--cleanup
Totally remove all cit work and database files.  Suitable for use when a totally new database is 
wanted, or to release the disk resources that cit is using.  Use with caution!

--no-dangerfile
This option will not check for danger files.

-db databasename, --database-name databasename
Use databasename as the base name for the database.  The database itself would be named 
databasename.db, the report file, databasename.rpt

--dbpath databasepath
Use databasepath as the directory in which the database is located.  Default: Current directory.

--overwrite
Ignore any pre-existing database; always create a new database.

-d, --dupcontents
Reports (usually in cit.rpt) all of the files that have duplicate hash values.

-do, --dupcontents-only
Duplicate contents only: cit only creates a cit.dup file based on the existing Cit database listing 
all files that have duplicate hash values.

-f, --file-changed
Hash the file and compare the hash value with the value found in the Cit database.  Report 
whether the file has changed or not.

-nb, --no-backup
Do not retain the old database after the run (typically kept in cit.db0).

VSTK Manual 5th Edition                                    90 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

-nc, --no-cleanup
Cit will not remove any tmp files.

-nr, --no-report
Do not generate the cit.rpt report file.

-nu, --no-update
Report changes in the file system, but do do not update the database.

-t tmp, --tmpdir tmp
Temp Directory: cit will create tmp files in tmp.  If this option is not specified, cit will use the 
appropriate temp location for the system.

-uo, --uniqcontents-only
Unique contents only: cit only creates a cit.uniq file based on the existing cit database listing 
all files that have unique hash values.

--
End of Options: Tells cit that all remaining arguments are to be treated as filenames, even if 
they start with a dash.

USAGE

INPUT

CIT can take input in three ways.

1.  cit with a filename argument.
In this mode cit will generate a MD5 signature for that file and write it to stdout.  No database 
is created or updated.
Example:

$ cit HelloWorld.java

2.  cit reading a data stream from the standard input.
In this mode cit will generate a MD5 signature for the data stream and write it to stdout.  No 
database is created or updated.
Example:

$ cat BigFile.tar | cit -S

VSTK Manual 5th Edition                                    91 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

3.  cit reading a filename list from the standard input.
This is the default mode of operation.  In this mode, cit accepts a list of filenames on standard 
input.  An MD5 signature (i.e., a cryptographic hash code) is generated for each file and 
compared to a previous signature for that file stored in a database (by default, cit.db; this can 
be overridden with the -db option).  A list of new and modified files is written to standard 
output.  A report of new, modified and deleted files is placed in cit.rpt (by default; again, see 
the -db option).
Example:

$ find / -type f -print | cit

CIT Example Script

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~
#!/bin/sh

#

Name: cit.sh

#

Copyright: 2003, 2004, 2005, 2006 CyberSoft Operating Corporation, All Rights
Reserved.

#

Description: This is a general script that will demonstrate how to run the CIT program.

The --dbpath option specifies the directory for reading cit_danger.db and writing cit.db.

The example sets dbpath to the current directory.

#

VPATH=/

VOPTS=

COPTS=

UOPTS=

mflag=

pflag=

vflag=

uflag=

cflag=

while getopts p:c: name

do

case $name in

p)

VSTK Manual 5th Edition 92 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

pflag=1

pval=$OPTARG

;;

v)

vflag=1

vval=$OPTARG

;;

u)

uflag=1

uval=$OPTARG

;;

c)

cflag=1

cval=$OPTARG

;;

?) printf "Usage: %s[-p <path>] [-c 'cit options'] \n" $0

exit 1

;;

esac

done

if [! -z "${pflag}"]; then

VPATH=${pval}

fi

if [! -z "${vval}"]; then

VOPTS=${vval}

fi

if [! -z "${uflag}"]; then

UOPTS=${uval}

fi

if [! -z "${cflag}"]; then

COPTS=${cval}

fi

PATH=/usr/bin:/usr/sbin:/bin:/sbin:$PATH

export PATH

VSTK Manual 5th Edition 93 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

VSTK_HOME=<vstk_home>

export VSTK_HOME

. $VSTK_HOME/bin/_config.sh

find ${VPATH} ${FIND_FLAGS} -type f -print \

| $VSTK_HOME/bin/cit ${COPTS}

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

FILES

LICENSE, cit.db, cit.rpt, cit.db0.

SEE ALSO

VFind, THD, BHead, JDIS, UAD, find.

BUGS

Please report all bugs to support@cyber.com.  Make sure to include the version of cit, the 
platform and OS, the script or command used, the complete output showing the bug, a short 
description of the problem, and contact information.

COPYRIGHT

Copyright 1996-2017 by CyberSoft, Inc.  All rights reserved.

CyberSoft, Inc.  May 2017 CIT

VSTK Manual 5th Edition                                    94 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

LBT & LBH 

These tools are critical when using the CIT Cryptographic Integrity Tool in conjunction with 
VFind.  

The Loop Back Head (LBH) and Loop Back Tail (LBT) programs provide a method of 
performing locked loop back logic for the purpose of ensuring that no target files are missed 
when virus scanning utilizing CIT for target reduction.  These loop back target files are 
identified as files which were known to be infected at the last run.  

Explanation:The CIT tool produces a target list of files which have been modified or added 
to the system.  This target list is then used to scan the files by VFind for viruses.  If the 
administrator chose to ignore the warnings of infected files from a system scan, then CIT 
may not report the file as changed the next time it runs.  This is a serious problem since it 
could leave an infected file undetected.  This problem is resolved by storing the file name of 
the infected target files in the loop back database called lb.db.  The lb.db database is a 
simple text file and can be read by humans.  When Loop Back Head runs and before it 
accepts a target file list from CIT it reads the lb.db database and transmits its contents to 
standard output for scanning by VFind.  This ensures that files which were previously 
known to be infected are scanned again and are in fact scanned before new files.  

In addition to these features, the LBT program provides the “restrict” feature which allows 
the users to eliminate the use of the “grep” command when parsing output from VFind for 
the purpose of data reduction.

Diagram of Data-flow for LBH and LBT

FIND => CIT => LBH => UAD => VFind => LBT => report 

||||

^delayed loopV

======================

database of infected files

VSTK Manual 5th Edition                                    95 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

LBH – LoopBack Head Command Line Options

NAME

lbh - CyberSoft's LoopBack Head Tool

SYNOPSIS

lbh
[ -c, --copyright ]
[ -h, -?, --help ]
[ -v, --version ]
[ -db= name, --database=name ]

DESCRIPTION

CyberSoft, Inc.'s LoopBack Head Tool is part of the VFind Security ToolKit.  LBH is used 
along with LBT to ensure that unchanged but infected files are re-analyzed by VFind.  LBH 
will read filenames from a database.  This database can be created any way the user wishes, so 
long as it is a flat text file that contains one filename per line.  LBT is provided as part of the 
VSTK to use VFind output to create a database suitable for use with LBH.  After reading from 
the database, LBH will read data from the standard input stream and write it to the standard 
output stream.

 OPTIONS

-c, --copyright
Display copyright information and then exit.  All other options will be ignored.

-h, -?, --help
Display usage message and then exit.  All other options will be ignored.

-v, --version
Display version information and then exit.  All other options will be ignored.

-db=name, --database=name
Use name as the database.  Without this option, lbh will enter passthru mode (read from stdin 
and write to stdout).

VSTK Manual 5th Edition                                    96 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

USAGE

INPUT

LBH can read filenames from up to two places.

LBH will read a database created by a program such as LBT.

LBH will also read filenames from the standard input stream.  LBH will read from stdin 
regardless of whether or not it successfully parsed a database.  This behavior is called passthru 
mode.
Example:

$ find / -type f | cit | lbh -db=lb.db | uad -s -ssw | vfind -ssr | lbt -db=lb.db -a

FILES

(none)

SEE ALSO

find, CIT, VFind, UAD, LBT.

BUGS

Please report all bugs to support@cyber.com.   Make sure to include the version of LBH, the 
platform and OS, the script or command used, the complete output showing the bug, a short 
description of the problem, and contact information.

COPYRIGHT

Copyright 1999-2017 by CyberSoft, Inc.  All rights reserved.

CyberSoft, Inc.  May 2017 LBH

VSTK Manual 5th Edition                                    97 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

LBT – Loop Back Tail Command Line Options

NAME

lbt - CyberSoft's LoopBack Tail Tool

SYNOPSIS

lbt
[ -c, --copyright ]
[ -h, -?, --help ]
[ -v, --version ]

lbt
[ -db=<value>, --database=<value> ]
[ -a, --append ]
[ -r=<value>, --restrict=<value> ]

DESCRIPTION

CyberSoft, Inc.'s LoopBack Tail Tool is part of the VFind Security ToolKit.  LBT is used 
along with LBH to ensure that unchanged but infected files are reanalyzed by VFind.  LBH 
will read filenames from a database.  This database can be created any way the user wishes so 
long as it is a flat text file that contains one filename per line.  LBT is provided as part of the 
VSTK to use VFind output to create a database suitable for use with LBH.  LBT will read data 
from the standard input stream and write it to the standard output stream.  LBT will create a 
database if the -db=name option is specified.  

OPTIONS

-c, --copyright
Display copyright information and then exit.  All other options will be ignored.  

-h, -?, --help
Display usage message and then exit.  All other options will be ignored.  

-v, --version
Display version information and then exit.  All other options will be ignored.  

-db=<value>, --database=<value>
Use name as the database.  Without this option, LBT will enter passthru mode (read from stdin 
and write to stdout).  

VSTK Manual 5th Edition                                    98 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

-t dir, --tmpdir dir
Set the directory LBT uses for its temporary database file to dir.  Without this option, UAD 
will use the default temp directory appropriate to the operating system.  

-a, --append
When a pre-existing database is specified, the append option causes new entries to be 
appended to the end of the database, otherwise, LBT will overwrite the database.  

-r=<value>, --restrict=<value>
The restrict option allows LBT to use the choke method (as described in VFind) to limit 
output as described in the table below.  

Num       Chevron Meaning
--------------------------------------------
 1 ##==> Informational Message
 2 ##==>> VFind Warning
 3 ##==>>> Serious VFind Condition
 4 ##==>>>>Possible Virus Detection

USAGE

INPUT

LBT reads output from VFind and depends on VFind's uniform chevron output.  
Example:

$ find / -type f | cit | lbh -db=lb.db | vfind | lbt -db=lb.db -a

OUTPUT

LBT can be used with the -r=<value> option to choke VFind's output.  The choke method is 
discussed in detail in the VFind man page.  

FILES

(none)

SEE ALSO

find, CIT, VFind, UAD, LBH.  

VSTK Manual 5th Edition                                    99 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

BUGS

Please report all bugs to support@cyber.com.  Make sure to include the version of LBT, the 
platform and OS, the script or command used, the complete output showing the bug, a short 
description of the problem, and contact information.  

COPYRIGHT

Copyright 1999-2017 by CyberSoft, Inc.  All rights reserved.  

CyberSoft, Inc.  May 2017  LBT

VSTK Manual 5th Edition                                    100 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

UAD – Universal Atomic Disintegrator

The UAD tool solves two difficult problems, identification and decomposition.  
Decomposition of a file to its smallest indivisible parts (universal atomic disintegration 
using classical Greek language meanings) is a difficult problem.  First, the program must 
have infallible identification of the file in order to decompose it.  This is not an issue for 
UAD, which identifies the file by direct examination of its contents.  Most decomposition 
tools assume the contents of a file by its file name.  If the file is named "xyz.zip" most 
decomposition tools will assume that the file is a "zip" compressed composite file.  UAD 
does not make any assumptions.  This also allows UAD to identify data in a byte stream 
where file name information may not exist.  This is important in a network environment and 
increases the accuracy of anti-virus scanning by reducing stealth attacks and by adding 
additional known information for the scanner.  

Secondly, decomposition is critical to proper pattern analysis.  There is no value in virus 
scanning a compressed, composite or encoded file, since the encapsulating technology will 
hide the contents from examination.  (There is an exception to this rule where the 
encapsulating technology is static and statically meaningful.) This is why UAD is able to 
decompose email, including attachments in uuencode and MIME formats.  It is also able to 
decompose tar, gnu gzip, pkzip, zip2exe, 7zip, Unix compress and other formats.  (See 
decompressor list from UAD.) UAD will continue decomposition recursively until every 
part of the file has been decomposed into a state that is known to be a terminus (atomic 
state), or has been decomposed into an unknown format.  Most unknown formats are already 
in the atomic state or are moot.  

A benefit of the UAD system besides its uses for virus scanning is its ability to decompose 
many formats of encapsulated files.  This can save a lot of time when the file format is not 
directly compatible with the system on which it resides.  The user just executes UAD with 
the file he wishes to decompose and UAD performs the rest.  Unfortunately, many times 
when a user uses a tool other than UAD to decompose a file into its parts, the tool will place 
the decomposed files in multiple places on the system.  UAD solves this problem by forcing 
the current working directory to be the top level directory for the purposes of decomposition. 
This allows a user or system administrator to have full control over the installation of a new 
program without "splatting" programs and data all over the system in an uncontrolled way.  

As an intelligence gathering program, UAD can detect the actual identity of a file even 
though its file name may be a lie.  This can be valuable information when doing an 
investigation.  For example, xyzzy.txt is identified as a tar file with a dozen graphic files.  
This should be a red flag requiring additional investigation.  

VSTK Manual 5th Edition                                    101 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

Newer versions of UAD also include automated decryption, which is important for the latest 
class of encrypted viruses which carry the encryption key as part of a text message.  While it 
may not be conceivable to some that someone would decrypt a file, then execute the 
contents, these attacks have been very successful.  

 

To view a partial list of expanders that UAD can decompose, use the command “uad --elist”. 
To see the list of file types that can be identified use the command “uad --tlist”.  

UAD ELIST:

Please use the command-line option to see the current list of expanders.  This list will 
always be incomplete.  

UAD expanders: tar (on), Z (on), gz (on), bz2 (on), HTML (off), text (on), zip (on), TNEF 
(on), Hqx8 (on), SIT (on), ISO (on), cpio (on), RAR (on), CAB (on), 7zip (on), ext (off)

VSTK Manual 5th Edition                                    102 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

UAD Command Line Options

NAME

uad - Universal Atomic Disintegrator

SYNOPSIS

uad
[ -c, --copyright ]
[ -h, -?, --help ]
[ -v, --version ]
[ --elist ]
[ --tlist ]
[ --enable expander ]
[ --disable expander ] 
[ -e prog, --external prog ] 
[ --cpu-time-limit num] 
[ --file-size-limit num ] 
[ -H, --HTML2text ] 
[ -H1 ] 
[ -H2] 
[ -H3 ] 
[ -k, --keep-tmpfiles ] 
[ -l, --follow-links ] 
[ -L, --transparent-links ] 
[ --magic-after <file> ] 
[ --magic-before <file> ] 
[ --magic-replace <file> ] 
[ -m, --malformed ] 
[ -M, --Mail ] 
[ -n, --no-expansion ] 
[ --no-recursion ] 
[ -p, --provide-all ] 
[ -p0, --provide-top ] 
[ -pid, --pid ] 
[ -q <string>, --quote <string> ] 
[ --recursion <num> ] 
[ -s, --stdin-file-list ] 
[ -S, --stdin ] 
[ -ssr, --smartscan-read ] 
[ -sst, --smartscan-types ] 
[ -ssw, --smartscan-write ] 
[ -t dir, --tmpdir <dir> ] 

VSTK Manual 5th Edition                                    103 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

[ -T, --Text]
[ -w, --write-files ] 
[ -z, --zeroing-off ] 
[ -- ]

DESCRIPTION

For each file argument, UAD (Universal Atomic Disintegrator) attempts to identify the file 
type.  If the file is a composite file of a type it knows how to expand, uad attempts to expand 
the file and recursively process the sub-files.

Currently, uad expands BinHex, TNEF, tar, RAR, zip, zip2exe, compress and gzip files as 
well as extracting MIME and uuencoded enclosures in text files.  Support for other archive 
and compression formats is available using external programs and the --external option.

OPTIONS

-c, --copyright
Display copyright information and then exit.  All other options will be ignored.

-h, -?, --help
Display usage message and then exit.  All other options will be ignored.

-v, --version
Display version information.

--elist
List expanders.

--tlist
List recognized file types.  The actual file types reported will vary depending on the file data, 
with %c and %s replaced by a character or string from the data, and %o, %d, %ld, and %x
replaced by an integer.  If an archive appears to be corrupted the "malformed" modifier may 
be reported, e.g.  "malformed zip archive file".  The ‘magic’ types are capable of reporting 
additional sub-type information which is appended to the basic type and is listed with extra 
indentation in the uad --tlist output. Some types and sub-types are listed more than once 
because internally they are detected from different byte sequences in the data which represent 
the same type.

--enable <expander> 
Enable expander.  Use --enable '*' to enable all expanders.

--disable <expander>
Disable expander.  Use --disable '*' to disable all expanders.

VSTK Manual 5th Edition                                    104 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

-e <prog>, --external <prog>
Use external expander for unknown archive types.  The user must provide the external 
expander program.  An example uad-helper Unix sh script is provided to handle cpio, bzip2, 
and StuffIt formats.

--cpu-time-limit <value>
This option causes uad to limit the time it spends executing to <value> seconds.  The default is 
3600 (one hour).

--file-size-limit <value>
This option causes uad to limit the the maximum size of its temporary files to <value> 
KibiBytes (KiB). The default is 1048576 (one GibiByte, GiB). 

-H, --HTML2text
HTML to text conversion: this option will cause UAD to produce a text version of any 
components which appear to be HTML documents.

-H1, -H2, -H3
HTML to text conversion, with higher detection level. Default is to only skip white-space 
before recognizing the first HTML tag.  With -H1 any initial non-HTML is skipped.  With 
-H2 unrecognized tags are also skipped. With -H3 <a and <img tag contents are also extracted 
as text.

-k, --keep-tmpfiles
The temporary files containing constituent files created during expansion are retained 
(normally they are deleted).  These files are announced as each input file is scanned when this 
option is specified.

-l, --follow-links
Symbolic links are followed.  First, the link file is described, then the file it points to is 
scanned.

-L, --transparent-links
Symbolic links are followed transparently.  The data in the file linked to is used to describe the 
link file.

--magic-after <file>
Use the rules in file to recognize file formats, after all built-in or previously loaded rules have 
been exhausted.  The rules file format is similar to that used by the file utility, as described in 
magic.

--magic-before <file>
Use the rules in file to recognize file formats, before attempting any builtin or previously 
loaded rules.

VSTK Manual 5th Edition                                    105 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

--magic-replace <file>
Use the rules in file to recognize file formats, instead of all builtin or previously loaded rules.

-m, --malformed
Keep malformed files.  Normally UAD does not keep any partial output or extracted 
components if an archive or encoding is malformed.  This option will cause UAD to keep such 
files, e.g.  they will appear on SmartScan output.

For use in conjunction with SmartScan output piped into VFind, the user should also specify 
the uad -p option when using -m, otherwise trailing content in a malformed archive may not be 
processed.

-M, --Mail
Set Mail mode: This option makes UAD report type "top level mail header" for the first 
component of input files.  Input files are treated as text and are assumed to be mail files 
including headers.

-n, --no-expansion
Do not expand composite files.

--no-recursion
Do not expand files recursively.

-p, --provide-all
Provide All Files: Normally UAD does not provide output files for archives which have been 
expanded into component files.  This option will cause UAD to also provide the archive files.

-p0, --provide-top
Provide Top Files: Normally UAD does not provide output files which are simply copies of 
input file archives which have been expanded into component files.  This option will cause 
UAD to also provide the top-level input archive files.

-pid, --pid
Print process id to stderr.

-q <string>, --quote <string>
Write a literal string on SmartScan output.

--recursion <value>
Recursion Limit: This option causes UAD to limit the level of recursively expanded files to 
<value>.

-s, --stdin-file-list
Read the names of files to scan from standard input, one per line.

VSTK Manual 5th Edition                                    106 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

-S, --stdin
Use the data on standard input as the file to scan.

-ssr, --smartscan-read
This option causes uad to read files from a SmartScan stream on standard input.

-sst, --smartscan-types
Used with -ssw, this option causes UAD to output expanded archive names and types.  For use 
in a pipeline with VFind or other post-processing, this allows detection and blocking based on 
archive file names and/or types without having to use the uad -p option.  With -p the 
unexpanded archive contents are provided; with -sst only the archive name and type is 
provided, and a single zero byte is written for the archive contents.

-ssw, --smartscan-write
Write a SmartScan Stream to the standard output.  This option is useful when interfacing with 
other SmartScan compliant tools such as VFind.

-t dir, --tmpdir <dir>
Set the directory UAD uses for its temporary files to <dir>.  Without this option, UAD will 
use the default temp directory appropriate to the operating system.

-T, --Text
Set Text mode.  This option forces UAD to treat input files as text.
-w, --write-files
Constituent files for which meaningful names are available (from, e.g., an archive or MIME 
message) are saved with those names in the current directory.  Sub-directories are created as 
needed.

-z, --zeroing-off
Do not zero out the temporary files before unlinking them.  This speeds things up a little, but 
introduces a potential security hole.

--
End of Options: Signals to uad that all remaining arguments are to be treated as filenames, 
even if they start with '-'.

USAGE

INPUT

UAD can take input in three ways.

VSTK Manual 5th Edition                                    107 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

1.  UAD with a filename or list of filenames as arguments.
Example:

 $ uad jdk1.1.tar.gz strerror.c

2.  UAD reading a data stream from the standard input.
Example:

$ dd -bs=20 -if=/dev/rmt/0mn | uad -S

3.  UAD reading a list of filenames from the standard input.
Example:

$ find /usr/local/bin -type f -print | uad -s

OUTPUT

Each input file is described with at least two lines written to standard output.  Each line begins 
with a zero- based number indicating how many levels of expansion were needed to access the 
file.  The first line reports the name, and the second reports the type.  For example:

 $ uad /bin/ls

might produce the following output:

0: Name: /bin/ls
0: Type: sticky 80386 COFF executable

If the file has sub-components, there will be a third line announcing the fact, followed by the 
components with a level number one greater than that of the file.  For example:

$ uad archive.tar

might produce:

0: Name: archive.tar
0: Type: tar archive
0: Components...
1: Name: foo
1: Type: unknown
1: Name: bar
1: Type: unknown

Such expansion can proceed to any number of levels.  For example:

VSTK Manual 5th Edition                                    108 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

$ uad mbox.tgz

might produce:

0: Name: mbox.tgz
0: Type: gzip compressed data
0: Components...
1: Name: unknown
1: Type: tar archive
1: Components...
2: Name: mbox
2: Type: text
2: Components...
3: Type: text fragment
3: Unnamed
3: Type: text (no enclosures found)
3: Unnamed
3: Type: text fragment
3: Unnamed
3: Type: text (8-bit)
3: Unnamed
3: Type: text fragment
3: Name: medal.gif
3: Type: GIF picture - version 87a 80 x 80, interlaced, 256 colors

In this case, UAD has extracted attachments from email messages. The components of type 
'text fragment' are typically mail messages and/or MIME headers that delimit the other 
components. These are put in mini-files of their own.  Attachments that are themselves text 
files are, of course, recursively scanned.  If nothing is found in them, this is announced as type 
'text (no enclosures found)'.  If, in the above example, UAD had been invoked with the -w 
option (see above), it would have also announced:

uad: Wrote file `medal.gif'

SMARTSCAN

UAD is a SmartScan compliant tool.  Specifying the -ssw option to UAD will cause UAD to 
produce a SmartScan stream as output.  This stream can then be redirected to another 
SmartScan compliant tool, such as VFind, and processed further.  For example:

 $ find /export/home -type f -print | uad -s -ssw | vfind -ssr > REPORT

FILES

LICENSE

VSTK Manual 5th Edition                                    109 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

SEE ALSO

VFind, CIT, THD, BHead, JDIS, find, file, magic

BUGS

Please report all bugs to support@cyber.com.  Make sure to include the version of UAD, the 
platform and OS, the script or command used, the complete output showing the bug, a short 
description of the problem, and contact information.

COPYRIGHT

Copyright 1996-2017 by CyberSoft, Inc.  All rights reserved.

Portions of this software are covered by the following copyrights:

Copyright 1991 Bell Communications Research, Inc.  (Bellcore)
Copyright Ian F.  Darwin, 1987.

The Universal Atomic Disintegrator incorporates (de)compression code by the Info-ZIP 
groups.  There are no extra charges or costs due to the use of this code, and the original 
(de)compression sources are freely available from CyberSoft, Inc.

CyberSoft, Inc.  May 2017 UAD

VSTK Manual 5th Edition                                    110 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

AVATAR (Self Healing) 

As computers become indispensable to all efforts, they become more valuable targets.  For 
example, if a command and control system can be knocked out by a computer virus, it can 
affect the efforts of an entire theater battle group.  A virus that may have cost only a few 
hundred dollars to develop then controls hundreds of millions of dollars worth of men and 
machines.  The same analogy can be made for civilian systems.  Avatar answers this 
problem by providing rapid return of control of a system through reactive baseline 
management.  Depending upon how it is configured, it can also detect and correct prior to 
major system fault.  

Avatar maintains the system Baseline Configuration.  It does so by executing system 
security policies that act as an intrusion detection and response system.  The most important 
function of Avatar is response.  If the system Baseline Configuration is modified, for any 
reason, it will be detected by Avatar and returned to the correct Baseline Configuration.  The 
value of Avatar's response system is that it enforces discipline by a non-subjective 
automated process which can execute many times per day.  

Intrusion is defined as any unauthorized modification to the system Baseline Configuration.  
The reason for this broader than normal definition is that it allows for unauthorized 
modifications by authorized and unauthorized personnel.  When an unauthorized person 
breaks into a computer, their actions will always be dictated by their goals.  If they are a 
passive reader, then their activity will be captured in the system logs.  If they are using the 
system as a platform for further attacks, or they want to ensure future access then they will 
download attack programs for execution.  To ensure future access, they will have to change 
the Baseline Configuration.  Modification of the system logs such as changing permissions, 
insertion of Trojan back doors into critical system applications, modifications of the 
Baseline in any form, or just plain destruction of critical system files, can all be detected and 
corrected by Avatar.  The addition of new inappropriate files to a system can be detected by 
CIT and VFind.  

The ability to maintain the Baseline Configuration also provides extensive immunity to new 
unknown software attacks within the Baseline.  If a binary or script virus infects a file, then 
the file will be overwritten by the Baseline version of the file.  This effectively destroys the 
virus, and is far superior to any form of virus disinfection used by any other company.  
When a virus infects a file, it modifies it.  In the process of infecting the file, it is common 
for the file to be damaged [ fv(a) = a' ]. The disinfection process used by most anti-virus 
companies may or may not remove the actual virus.  It is most common not to remove the 
virus, but merely change program pointers so that the program executes around the virus 
without executing the virus.

VSTK Manual 5th Edition                                    111 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

If necessary, the virus is then modified so that it is no longer detected by the same anti-virus 
program as a live virus.  This preserves the damage created by the virus and potentially adds 
new damage if the pointers are modified incorrectly.  [ fd(a') = a'',  a ≠ a'' ] In addition, not all 
viruses, especially new unknown viruses, can be disinfected.  None of these problems exist 
with Avatar since a captured copy of the original file is used to overwrite the infected file  
[ favatar(a') ≡ a ]. This also works for all forms of software attacks in Baseline configured 
programs, not just viruses or hacker attacks.  

Avatar security policies can be maintained on a file by file basis or on an entire system.  
Security policies that can be maintained are:

(e - EXISTENCE) The existence rule states that the file(s) must exist.  It does not infer any 
other rules.  This is extremely valuable for files that must exist but whose contents change 
constantly.  Two examples of files of this type are log files and password shadow files.  

(p - PERMISSIONS) The permissions rule states that the permissions of a file must not 
deviate from the baseline configured permissions.  Generally all system command, log and 
configuration files have critical permission settings that must not change.  This can be 
combined with the "e" and "o" rules to provide maximum protection for files whose contents 
need to change over time.  

(o - OWNERSHIP) The ownership rule states that the owner of the file must not deviate 
from the baseline configured ownership.  For example, the ownership of the password 
shadow file can be used as a back door into a system , while ownership of a log file can be 
used to stealthily erase evidence of activity on a system.  

(s- CRYPTOGRAPHIC SIGNATURE) The cryptographic signature also known as a hash 
value states that an alarm should be activated if the contents of the file change but no further 
action should take place.  This is extremely useful when used within other programs and 
when attempting to catch hackers.  An additional use is to allow a script or program to verify 
that a critical file conforms to the baseline configured contents without overwriting any 
deviations from the baseline.  

(c - FILE CONTENTS) The contents rule states that the contents of a file must not change.  
If the contents change for any reason, the file is overwritten with the correct baseline 
configured contents.  

(!) A rule exists to force a pathname to not be baselined.  This is most valuable for scratch 
file areas such as the Unix "/tmp" and "/var/spool" areas.  

VSTK Manual 5th Edition                                    112 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

(R – RECURSIVELY) The opposite also exists which forces Avatar to baseline the entire 
path recursively.  

(E – EVERYTHING) Finally a shorthand rule exists which has the same operation as 
selecting the "eposcR" rules. 

 

The Avatar Database was designed so that it can be read only.  This means that the Avatar 
Check and Avatar Correct programs along with an Avatar Database can all exist on an 
archival CD-ROM or other read only format, (NFS, DVD, Blueray, paper, etc).  A read only 
version of Avatar cannot be hacked.  Once invoked by a background process such as Unix 
Cron or remotely invoked from a Security Server or other trigger, the Avatar Correct system 
will automatically detect and correct any problem within its defined domain.  

A significant feature is that an alternative Avatar Database can be defined for automatic 
failover if the primary Avatar Database has a failure.  For example, if the primary Avatar 
Database is located on a network disk and the network failed, Avatar can continue 
processing with a local database.  In fact, multiple Avatar Databases can exist and be 
invoked in any order necessary.  This allows Avatar to be used for multiple purposes, 
including rapid system software update distribution and configuration for thousands of 
workstations without the need for personnel to visit them.  System customization can also be 
accomplished by a smaller Avatar database which can be stored locally or at a central 
location.  

One of the advantages of the Avatar system for Internet based systems such as web servers 
is that shortly after a hacker modifies a web page, the Avatar system can be automatically 
invoked and restore the damaged page.  If Avatar is run dozens of times per day then the 
hacker would literally have to break in and modify the system dozens of times per day.  This 
is a huge incentive to leave the system alone.  

Avatar is an automated tool that runs with or without end user operation.  The primary 
function is to automatically “repair” a damaged system.  Damage is defined by the System 
Administrator or System Architect when they create the Avatar database.  Avatar was 
designed for battlefield operation; therefore, it assumes a hostile environment that may in 
fact be unmanned.  The CIT tool complements the Avatar tool.  CIT is generally used as a 
“big brother” type of program to allow the System Administrator or Security Officer to 
understand what is happening in a system.  It does this by cryptographically digesting the 
entire contents of a system, and then providing several reports, one of which highlights what 
files were added, deleted, modified or duplicated within the system.  

VSTK Manual 5th Edition                                    113 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

It will also inform the user of any dangerous or prohibited files in the system.  This in turn 
can be used to understand what an end user is doing, intrusion detection, detection of stealth 
trojanization of a system and provides critical information to the System Administrator 
which can cut down on system diagnostic time by a significant factor.  In one case, a System 
Administrator in a government organization was able to determine that their server was 
hacked, what the hacker modified and added to the system, and restore full operation within 
a couple of hours.  

Normally, an operation of this type would require a full system rebuild which could take 
three to six days.  Using Avatar for centralized distribution and control of a heterogeneous 
distributed global network is within the design parameters and functionality of the program.  

The Avatar system is rule based.  The rules are defined and then compiled into an Avatar 
database along with any files or information required to fulfill the rules.  Once a database is 
created it can be used read only.  It can be distributed on CD-ROM, DVD, Blueray or on a 
read only exported file system.  The ability to provide an Avatar database on a gold foil 
DVD which is impervious to radiation damage means that a lights out operations could 
potentially repair any damage to critical components of the file system in the event of 
random “bit flipping”.  In addition, Avatar is able to utilize multiple databases, including 
rollover databases.  This feature allows centralized distribution of updates, upgrades, 
security patches, changes to the standardized baseline configuration, and forced adherence to 
the baseline.  The database(s) that Avatar uses does not have to reside on the system it is 
operating upon.  A database can be located in a centralized network or command operations 
center and provided over a read only virtual private network using standard approved 
encryption.  Avatar is insensitive to the manner in which the database is provided as long as 
it can open and read the file.  It is also insensitive to the location of the file system it is 
operating upon as long as it has full read/write permission.  

One example of a potential centralized distribution method which includes built in safe 
guards is to configure Avatar for automated background operation in which both a local 
Avatar database and a network based Avatar database are specified for processing.  The 
local database can contain critical file system rules which must be maintained in the event of 
a network failure or breach.  The network based database can be centralized, or even 
localized, from a central distribution point.  This network database can then be utilized for 
rapid deployment of system updates, etc.  For example, if during operations a new attack is 
attempted and a security patch is required to fend off the attack and Avatar systems in the 
field are configured to check the network database every 12 hours, then the security patch 
can be distributed and installed globally within that 12 hour period.  Assuming that the 
bandwidth is available, that time period can be shortened to any practical time period.  This 
would allow for rapid baseline management and distribution for an evolving semi-real time 
need.  

In this specific example there are several advantages:

VSTK Manual 5th Edition                                    114 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

1. Training for Avatar’s security and distribution needs are the same.  Anyone trained in 
Avatar can fulfill both functions.  

2. Fully trained senior people are a valuable scarcity.  The ability to bring the full power 
of senior people to bear globally, in a timely manner from a centralized and safe 
location, expands the ability to react correctly in near real time.  

3. Centralized distribution using Avatar is an example of working smarter, not harder. 
An army of field technicians is not required to install distributions, since they can be 
installed automatically.  This is a significant cost savings in man power and training.  

4. Avatar’s database system is flexible and multiple databases can be defined for 
execution.  This means that database creation can be broken up and distributed within 
bodies of authority.  In a complex multi-vendor environment the user could 
potentially breakup these databases by vendor or any other functionality with either 
centralized approval and distribution or multi-centralized distribution.  

5. Roll over functionality means that if a specific network operations center is not 
functional a secondary distribution point can be specified.  This secondary point can 
also define roll over distribution points.  

In addition to the human readable report, CIT produces a machine readable report which can 
be utilized by a threat assessment program like the VFind pattern analysis system to look for 
attack code (a.k.a.  computer viruses).  This specific machine-readable report is a list of files 
on the protected file system, which have been added or modified since the last time CIT was 
run.  These are prime candidates for analysis.  In addition, since CIT does not rely upon the 
system date and time function and it uses cryptographic strength digests, the user will know 
within a specified time window when a file system event took place.  That time window is 
the period of time between any CIT database creation and the following CIT execution.  
This information is very valuable for a Security Analyst.  

It should be noted that while Avatar only pays attention to the files and directory trees it is 
directed to protect, the CIT tool can evaluate the entire system.  This makes the CIT tool 
complementary and valuable when ascertaining the condition of a system. 

The CIT tool database format is open, and can be viewed by a standard text editor.  This 
means that a collection of databases can be created and used as a diagnostic tool against any 
system.  Such databases can reveal information, such as what revision a system conforms to. 
It can reveal which operational files were modified, and what the system has been doing.  If 
these databases are downloaded to a central point, it can be used for almost instant detection 
of a previously unknown attack against the systems in a network.  In addition, a centralized 
collection of operational CIT databases would allow for easy determination of baseline 
compliance, thereby closing a command and control loop.  Digestion of these databases at 
the central location can produce almost any kind of report necessary for the maintenance of 
the systems.  

VSTK Manual 5th Edition                                    115 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

The following three diagrams demonstrate some non-intuitive ways of configuring Avatar 
besides the standard of Avatar running on the system it is protecting.  

Avatar Example Diagram 1

This diagram demonstrates how a multi-boot workstation can use “hidden partitions” to 
operate a backup operating system with Avatar.  The Avatar system can then be used to 
maintain the baseline configuration of the primary partition.  The advantage of this 
configuration is that even if the primary operating system is completely non-functional it can 
be returned to baseline configuration.  

As a side note, the operating systems used do not have to be the same.  For example, 
partition 2 could be Microsoft based while Partition 4 could be Unix/Linux based or any 
combination thereof.  This configuration is not tied to any size system.  It can be 
implemented on a large server or on a small laptop.  

If a workstation hardware permits booting from the network then this entire configuration 
can be configured where the secondary operating system is network based and not system 
resident.  

It should also be noted that this configuration and the configurations presented on the next 
page can also be used with all of the other tools in the ToolKit.  

VSTK Manual 5th Edition                                    116 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

For example, using this configuration with CIT would allow the user to diagnose a failed 
operating system that did not boot.  Using this configuration with UAD and VFind would 
allow the user to scan for viruses using a known clean operating system.  The possibilities 
are endless.  

Avatar Example Diagram 2

In this example, a secure server has been setup to run Avatar.  The application server disk 
drives are shared using a secure protocol to the Avatar server.  Avatar controls the baseline 
configuration of the application server remotely over the network.  If the Application server 
disk share “disappears” then standard off the shelf software will sound an alarm.

  

VSTK Manual 5th Edition                                    117 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

Avatar Example Diagram 3

This example is the inverse of example 2.  In this example the application disk is attached to 
the Avatar server and shared out to the Application Server.  

VSTK Manual 5th Edition                                    118 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

Avatar Command Line Options

NAME

Avatar - File System Baselining Tool

SYNOPSIS

Avatar command root baseline [arguments]

DESCRIPTION

Avatar is a system for maintaining the state of a file system in a baseline and uses that baseline 
to check and correct the contents of file systems.

Avatar can be used:

* Interactively

* In a fully automated mode, invoked by scheduling processes

(such as UNIX cron)

* Or as part of a stimulus/response from other packages (e.g.,

virus detection)

Avatar protects files by recording one or more of the following:

* their existence

* their permissions

* their user and group ownerships

* a cryptographic signature of their contents

* their actual contents

VSTK Manual 5th Edition                                    119 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

When it determines that one or more of these attributes is incorrect, Avatar can restore the 
attributes to their recorded state.

Which attributes are recorded for which files is completely configurable.

The root of the file system used is specified with most Avatar commands. This allows a 
baseline created using the contents of one file system to be used to check and correct many 
different file systems located at various places in a file system hierarchy.

USAGE

Avatar Command Usage

Avatar has eight modes of operation: create, update, iupdate, add, delete, configuration, check, 
and correct.

The first six commands create, examine and modify the baseline. The last two use the baseline 
to check and/or correct individual files, directory hierarchies, or whole file systems.

Each of these commands is invoked by invoking the avatar program with the command name 
as its first argument. For example:

$ avatar create foo bar n.cfg

Most commands take other arguments as well which come after the function name (i.e., foo, 
bar and n.cfg above). They will be explained in the entry for each command.

In general, though, most commands have root and baseline as their first two arguments. These 
are the root of the file system to be used and the name of the baseline directory to be used (or 
created) respectively.

The Configuration

Everything in a baseline maintained by avatar is controlled by the baseline's configuration. 
The configuration describes what files and directories to check and what attributes to check 
for each of them. The configuration is initialized by the create command from a configuration 
file.

VSTK Manual 5th Edition                                    120 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

An example of a possible real configuration is to protect the entire file system with the 
exception of /home and /logs. The configuration file used to initialize this configuration via 
the create command could look like:

E /

! /home

! /logs

The configuration can also allow the system to record varying sets of attributes for different 
files and directories. It also allows the specification of a directory to be recursively baselined 
with certain files and sub-directories excluded or recorded with different attributes.

Configuration File Format

The configuration file is used by create to control the initial configuration of the baseline. 
Once created, the configuration is part of the baseline and can be modified by add or delete. It 
can be queried by the configuration command.

Each line of the configuration file contains a pathname to be baselined which can be either a 
file, special file, or a directory.

Each pathname is prefixed by a list of the attributes to baseline, followed by a space. The 
attributes are represented by single letters as follows:

e = existence

p = permissions

o = ownership

s = cryptographic signature

c = file contents

! = do not baseline the pathname

R = baseline the recursive contents of directories

E = everything (eposcR)

Thus, a configuration file that consisted of the single line:

E /

VSTK Manual 5th Edition                                    121 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

baselines the entire file system. Individual files or directories listed can form exceptions to the 
attributes listed for a recursively baselined directory. So, if the above configuration file had 
the line.

!R /var

then /var and its contents would not be baselined.

The Commands

The description of each command begins with its invocation. The parameters for all 
commands are order dependent and are labeled with names in italics. Optional parameters are 
enclosed in square brackets.

create

The create command baselines all the pathnames listed in configfile, with root prefixed, 
placing the baseline database in the baseline directory.

If provided, the altbaseline parameter specifies the location of an alternate baseline which is a 
secondary source of information used by the check and correct commands (See the extended 
discussion of this below). There can be one alternate baseline for each baseline. It can be set 
via the create, update or iupdate commands.

Note that a baseline may consist of a pointer to an alternate baseline, such as on a CD-ROM or 
an NFS mounted drive.

If create has no problems, it will exit with a status of 0; otherwise, it will exit with a non-zero 
status.

$ avatar create root baseline configfile [altbaseline]

update

The update command updates the baseline in the baseline directory with information about the 
pathnames in the configuration (with root prefixed). If altbaseline is provided, avatar uses it as 
a second source of information. Exit status is 0 if there are no problems.

$ avatar update root baseline [altbaseline]

VSTK Manual 5th Edition                                    122 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

One example of a use of the update command would be to modify the baseline due to the 
installation of a product upgrade on the system when the files of the upgrade reside in an 
already configured (in the configuration) directory. Another use is to change the alternate 
baseline without updating any other baseline contents via the invocation:

$ avatar update / , , altbaseline

The commas indicate that file information is not to be updated.

iupdate

The iupdate command performs the same function as update except that the baseline 
administrator is interactively prompted for a yes/no response on each file that needs updating. 
Only files for which a `yes' response is given will have their baseline information updated.

$ avatar iupdate root baseline [altbaseline]

Avatar configuration root baseline

configuration
The configuration command outputs a report to standard output describing the current 
configuration of baseline. This is in a form suitable for use as a configfile argument to the 
create command. The root argument to this program has no effect and is only present for 
purposes of consistency.  An example of using this command to output the entire 
configuration of a baseline residing in the directory /baseline is:

$ avatar configuration / / baseline

check

The check command checks the directory structure based at root (or the individual file, with 
root prefixed, if specified) against the information in the baseline database in the baseline 
directory. Exit status is 0 if there are no problems. Exit status is 1 is there if a discrepancy 
between baseline and the file system. In that case, a report of the discrepancies is written to 
standard output. The exit status is greater than 1 in the case of other problems.

$ avatar check root baseline [file]

VSTK Manual 5th Edition                                    123 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

correct

The correct command attempts to restore the directory structure based at root (or the 
individual file, with root prefixed, if specified) to the state described in the baseline database 
in the baseline directory. Correct automatically invokes check for the purposes of determining 
which corrections are needed. Exit status is 0 if the restoration is completely successful and a 
report of the corrections made is written to standard output. Otherwise, the exit status is non-
zero and a report of the problems encountered is written to standard error.

$ avatar correct root baseline [file]

Avatar add root baseline attributes path

add

The add command allows the addition of files to the baseline. It also updates the 
corresponding file information in the baseline. attributes is an attribute list as described for the 
configuration file above. An example of its use is adding protection to a disk drive that was 
recently added to the system.

$ avatar add root baseline path

delete

Similarly, the avatar delete command allows the deletion of files from the baseline.  

$ avatar delete root baseline path

Which is also equivalent to:

$ avatar add root baseline ! path

which uses the ! flag to indicate that the path is not to be baselined. Information about path is 
removed from baseline and the configuration is modified so that subsequent updates to the 
baseline will not include information about path.

Explanation of Alternate Database

Since avatar will only maintain files specified in the configuration, it may be desirable to 
locate some or all of the baseline on a central system for access via NFS or on a CD-ROM. 
The alternate baseline function provides a baseline that is only used by the check and correct 
commands.

VSTK Manual 5th Edition                                    124 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

The alternate baseline may be used if there is a failure of the primary baseline during the 
operation of the check or correct commands. If the program was able to obtain the reference to 
the alternate database before the failure of the primary one, it can be used instead. This would 
be useful in the case of a network failure where the primary baseline is contained remotely. A 
smaller, secondary baseline of very critical files may be contained on the unit operating.  

If, during a correct operation, a file is found to have an incorrect cryptographic signature and 
the file contents are not contained in the primary baseline, then the alternate baseline is 
consulted.  The alternate baseline may also be used if there is an explicit file argument to the 
check or correct commands. If the file isn't in the configuration of the primary baseline, these 
programs check for it in the alternate baseline.

Lastly, alternate baselines may be explicitly used in scripts that invoke Avatar. Avatar always 
exits with status 23 if, upon initialization, it can't access the specified baseline. This exit status 
can then be checked in a script to automatically re-invoke Avatar, explicitly pointing to an 
alternate baseline.

Simple Introductory Use

Create a directory of data to be baselined; call it /data.

Create a config file called avatar.cfg with the single line:

$ E /data

That says to baseline everything in all files. Enter the following command:

$ avatar create / baseline avatar.cfg

Examine the output; it should reflect baselining everything in /data.

Run `avatar configuration / baseline'; that should just regurgitate the contents of avatar.cfg.

Run `avatar spew / baseline'; this undocumented function lists the entire baseline contents.

Run `avatar check / baseline'; this should produce no output as nothing has been changed.

Run `avatar update / baseline'; again, there should be no output because nothing has changed.

VSTK Manual 5th Edition                                    125 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

Modify a file somewhere in /data.

Perform a check followed by an update followed by another check. 

The first check should report the change; the update should report incorporating the change; 
the second check should report nothing, since nothing's been changed since the last update.

Modify another file in /data.

Perform a check, followed by `avatar correct / baseline', followed by another check.

FILES

LICENSE

SEE ALSO

VFind, CIT, THD

BUGS

Please report all bugs to support@cyber.com.  Make sure to include the version of Avatar, the 
platform and OS, the script or command used, the complete output showing the bug, a short 
description of the problem, and contact information.

COPYRIGHT

Copyright 1999-2017 CyberSoft, Inc. All rights reserved.

CyberSoft, Inc. May 2017 Avatar 

VSTK Manual 5th Edition                                    126 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

THD – Trojan Horse Detector

THD answers the question, “How does a user find a chameleon Trojan horse attack when 
there is no contents to scan?” The chameleon Trojan horse attack works because a user is 
able to redirect a system command to a program of the same name in a different location.  
The chameleon may or may not have contents.  If the chameleon has contents, it can be 
located using VFind.  If it does not have contents, then THD can locate it, because by 
definition, the file name must have the same name as another program on the system or the 
attack will not work.  A Chameleon Trojan that does not have contents damages the system 
by disabling important system commands with empty files that do nothing.  This will tend to 
break script programs in addition to delaying efforts by the users and system administrators.  

An example of a common chameleon attack is to use the “touch” command to create an 
empty file with execute permission in the user path prior to the actual commands.  Since 
many users put their home directory first in their path prior system directories these attacks 
are commonly performed on a per user basis.  Commands on Unix/Linux systems which are 
commonly attacked are: ls, cd, echo, pwd, rm, mv, mail, vi, ed, grep,login, logout, sh, csh, 
ksh, lp, ps and kill.  

VSTK Manual 5th Edition                                    127 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

THD Command Line Options

NAME

thd - Trojan Horse Detector

SYNOPSIS

thd
[ -c, --copyright ]
[ -h, -?, --help ]
[ -v, --version ]

thd
[ -a alarmfile, --alarmfile alarmfile ]
[ -i ignorefile, --ignorefile ignorefile ]
[ -id, --ignore-dotfiles ]
[ -nr, --no-report ]

DESCRIPTION

CyberSoft, Inc.'s Trojan Horse Detector is part of the VFind Security ToolKit.  THD is used to 
detect trojan horse files.  It does this by analyzing the basenames (i.e., file names not including 
any directory part) of full path names that it reads from standard input.  It's general enough to 
be used for many other system analysis/administration purposes as well.

THD reads a list of file names (one per line) from its standard input and generates a report to 
standard output that lists all files with identical basenames.

If an alarmfile is provided, it should be a text file with file names (one per line) to watch for 
(e.g., 'ls').  Files with the same basename as one listed in the alarmfile will be listed in the 
report.

If an ignorefile is provided, it should be a text file with basenames to ignore when checking 
for duplicate file names (e.g., 'README').

 OPTIONS

-c, --copyright
Display copyright information and then exit.  All other options will be ignored.

-h, -?, --help
Display usage message and then exit.  All other options will be ignored.

VSTK Manual 5th Edition                                    128 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

-v, --version
Display version information and then exit.  All other options will be ignored.

-a alarmfile, --alarmfile alarmfile
Tells THD to read filenames from alarmfile.  Alarmfile is a text file that contains filenames 
(one per line) that will be included in the report when found on the system.

-i ignorefile, --ignorefile ignorefile
Tells THD to read filenames from ignorefile.  Ignorefile is a text file that contains filenames 
(one per line) that will be ignored when duplicates are found on the filesystem.  These files 
will not appear in the report.

-id, --ignore-dotfiles
Ignore all files beginning with a '.' and do not report them as duplicates.

-nr, --no-report
Do not generate a report.

USAGE

INPUT

THD takes input from stdin.  Cybersoft suggests that the user uses the UNIX find command to 
feed a list of files to THD.

Example:
$ find / -type f -print | thd --ignore-dotfiles -a myalarms -i myignores

OUTPUT

THD 's output is very uniform.  It will be in this form:

(alarm | dup):<set_number>:<instance_number>:<filename>

The numbers start at 0.  An example output, assuming the use of an alarms file containing 
'sendmail', might be as follows:

dup:0:0:/bin/ls
dup:0:1:/usr/bin/ls
dup:1:0:/bin/cat
dup:1:1:/usr/bin/cat
alarm:0:0:/home/foo/sendmail
alarm:0:1:/home/bar/sendmail

VSTK Manual 5th Edition                                    129 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

The above example shows that two suspect files were found, as indicated by the 'alarm' lines. 
Also note that two sets of two files each with the same basename were discovered in two 
different directories as indicated by the 'dup' lines.  The regularity of this output makes it 
suitable for input to other programs.

THD Example Script

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#!/bin/sh

#

Name: thd.sh

#

Copyright: 2003, 2004, 2005, 2006 CyberSoft Operating Corporation, All Rights
Reserved.

#

Description: This is a general script that will demonstrate how to run the Thd program.

#

VPATH=/

TOPTS=

pflag=

tflag=

while getopts p:t: name

do

case $name in

p)

pflag=1

pval=$OPTARG

;;

t)

tflag=1

tval=$OPTARG

;;

?) printf "Usage %s [-p <path>] [-t thd options] \n" $0

exit 1

;;

esac

done

VSTK Manual 5th Edition 130 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

if [! -z "${pflag}"]; then

VPATH=${pval}

fi

if [! -z "${tflag}"]; then

TOPTS=${tval}

fi

PATH=/usr/bin:/usr/sbin:/bin:/sbin:$PATH

export PATH

VSTK_HOME=<vstk_home>
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

FILES

thd.srt, thd.tmp

SEE ALSO

VFind, CIT, BHead, JDIS, UAD, find

BUGS

Please report all bugs to support@cyber.com.  Make sure to include the version of THD, the 
platform and OS, the script or command used, the complete output showing the bug, a short 
description of the problem, and contact information.

COPYRIGHT

Copyright 1996-2017 by CyberSoft, Inc.  All rights reserved.

CyberSoft, Inc.  May 2017 THD

VSTK Manual 5th Edition                                    131 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

BHead – Binary Head

BHead is a simple tool.  It is a program that reads a specified number of bytes from a file or 
byte stream and writes them to standard output.  While this is not a complex task, the 
problems the tool can solve can be complex.  One such problem is that Unix systems running 
on Intel based PC architecture hardware can be infected with boot sector viruses.  Unix 
systems do not have a convenient way to read just the boot sector for scanning.  Using the 
Unix "dd" command the entire raw disk drive can be read and output as a byte stream.  
Scanning the entire drive would be a redundant waste of time, however, using BHead the 
bytestream can be cut to just the portion of the drive that contains the boot sector.  BHead can 
also operate on all forms of removable media.  

NAME

bhead - Binary Head tool

SYNOPSIS

bhead
[ -c | --copyright ] 
[ -h | -? | --help ]
[ -v | --version ]

bhead
[ -b numbytes ]

DESCRIPTION

BHead reads from the standard input and outputs the first numbytes bytes to standard output.  
This is especially useful when the user only needs to scan a specific number of bytes from a 
raw device such as a boot sector or tape.

USAGE

OPTIONS

-c, --copyright
Display copyright information and then exit.  All other options will be ignored.

-h, -?, --help
Display usage message and then exit.  All other options will be ignored.

VSTK Manual 5th Edition                                    132 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

-v, --version
Display version information and then exit.  All other options will be ignored.

-b numbytes
This option tells bhead how many bytes to output to standard output.

Bhead Example Script: Boot.sh
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#!/bin/sh

Name: boot.sh

Copyright 2003, 2004, 2005, 2006 CyberSoft, Inc. All Rights Reserved.

This is an example script on how to use bhead with VFind.
One possible use for this is to scan a boot sector on a
PC based Unix system without having to process the entire
disk drive. This may not be a problem for floppy diskettes
but could take a long time on a large hard disk drive unless
bhead is used.
boot.sh requires the following command line options:
-d <raw device path> which specifies the full path of the
raw device of the hard drive containing
the boot sector
-b <blocking factor> blocking factor of the disk drive

PATH=/usr/bin:/usr/sbin:/bin:/sbin:$PATH
export PATH

VSTK_HOME=/opt/vstk
export VSTK_HOME

DEVOPT=
BFOPT=
dflag=
bflag=
while getopts d:b: name
do

case $name in
d)

dflag=1
devval=$OPTARG
;;

VSTK Manual 5th Edition 133 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

b)
bflag=1
bfval=$OPTARG
;;

?) printf "Usage: %s -d <raw device path> -b <blocking factor>\n" $0
exit 1
;;

esac
done

if [-z "${dflag}" -o -z "${bflag}"]; then
printf "Usage: %s -d <raw device path> -b <blocking factor>\n" $0
exit 1

fi

/bin/rm -f sysreport
touch sysreport
echo "VFind OUTPUT REPORT - BHEAD" >> sysreport
$VSTK_HOME/bin/vfecho_n "System Name: " >> sysreport
hostname >> sysreport
date >> sysreport
df >> sysreport
echo "=="
>> sysreport

The user must specify -d <raw device path> to the correct device
for their system and must specify -b <blocking_factor> to the
correct blocking factor for their disk.
Note that if the input blocking factor and the output blocking factor is
different, you cannot use the "bs" option. Refer to the "man" pages for "dd"
for more information. These values may be different for hard disks and floppy
disk drives.

dd if="${devval}" bs="${bfval}" | $VSTK_HOME/bin/bhead -b 1024 | \
 $VSTK_HOME/bin/VFind --stdin |grep "##==>>>" >> sysreport

echo "=="
>> sysreport
date >> sysreport
df >> sysreport
mail root < sysreport

VSTK Manual 5th Edition 134 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Example of BHead with CIT to check boot sector for changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#!/bin/sh
#
# Name: boot_CIT.sh
#
# Copyright 2011 CyberSoft, Inc. All Rights Reserved.
#
# This is an example script on how to use CIT to detect a change in the
# boot sector of a drive. One possible use for this is to check a boot
# sector on a PC based Unix system without having to process the entire
# disk drive.  This may not be a problem for floppy diskettes
# but could take a long time on a large hard disk drive.
#
# boot_CIT.sh requires the following command line options:
#  -d <raw device path> which specifies the full path of the 
#  raw device of the hard drive containing 
#  the boot sector
#  -b <blocking factor> blocking factor of the disk drive

PATH=/usr/bin:/usr/sbin:/bin:/sbin:$PATH
export PATH

VSTK_HOME=/opt/vstk
export VSTK_HOME

DEVOPT=
BFOPT=
dflag= 
bflag= 
while getopts d:b: name
do

case $name in
d)

dflag=1
devval=$OPTARG
;;

b)
bflag=1
bfval=$OPTARG
;;

?) printf "Usage: %s -d <raw device path> -b <blocking factor>\n" $0
exit 1
;;

VSTK Manual 5th Edition                                    135 of 343



VSTK Manual 5th Edition CyberSoft Operating Corporation

esac
done

if [ -z "${dflag}" -o -z "${bflag}" ]; then
printf "Usage: %s -d <raw device path> -b <blocking factor>\n" $0
exit 1

fi

/bin/rm -f sysreport
touch sysreport
echo "-- CIT BOOT OUTPUT REPORT --  " >> sysreport
$VSTK_HOME/bin/vfecho_n "System Name: " >> sysreport
hostname >> sysreport
date >> sysreport
df >> sysreport
echo "============================================================" 
>> sysreport

# The user must specify -d <raw device path> to the correct device 
# for their system and must specify -b <blocking_factor> to the 
# correct blocking factor for their disk.
# Note that if the input blocking factor and the output blocking factor is 
# different, you cannot use the "bs" option.  Refer to the "man" pages for "dd"
# for more information.  These values may be different for hard disks and floppy
# disk drives.

if [ ! -f "./cit.db" ]; then
echo "No database, running CIT"
find . -type f | $VSTK_HOME/bin/cit
exit 1

fi

dd if="${devval}" of=boot.image  bs="${bfval}" count=2
$VSTK_HOME/bin/cit -f ./boot.image >> sysreport 2>&1

echo "============================================================" 
>> sysreport
date >> sysreport
df >> sysreport
mail root < sysreport
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

VSTK Manual 5th Edition 136 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

SEE ALSO

VFind, CIT, UAD, dd, cat

BUGS

Please report all bugs to support@cyber.com. Make sure to include the version of BHead, the
platform and OS, the script or command used, the complete output showing the bug, a short
description of the problem, and contact information.

COPYRIGHT

Copyright 1999-2017 CyberSoft, Inc. All rights reserved.

CyberSoft, Inc. May 2017 BHead

VSTK Manual 5th Edition 137 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

JDIS – Java Disassembler

JDIS is a tool that performs fast disassembly of Java bytecode. There is a version of JDIS
called JADE (Java Advanced Disassembly analysis Engine) built into VFind. It is important
to disassemble Java byte code prior to virus scanning because it is the only way to associate
constant pool entries with opcodes. This association allows the virus scanner to scan for
what is actually going on in the program instead of guessing. VFind is the only anti-virus
tool to provide scanning of Java disassembly.

JDIS is also provided as a stand-alone tool so that a security officer can disassemble a Java
bytecode program for manual analysis. This can be valuable when confronted with a
potential new, unknown Trojan Horse written in Java.

JDIS Command Line Options

NAME

jdis - Java Disassembler tool

SYNOPSIS

jdis
[-c, --copyright]
[-h , -?, --help]
[-v, --version]

jdis
[-f filename]

DESCRIPTION

JDIS is CyberSoft's Java Disassembler. Java classes (compiled java sources) are examined
and disassembled. The output of the disassembly is written to stdout. The output from JDIS
is intended for analysis, not recompilation.

OPTIONS

-c, --copyright
Display copyright information and then exit. All other options will be ignored.

-h, -?, --help
Display usage message and then exit. All other options will be ignored.

VSTK Manual 5th Edition 138 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

-v, --version
Display version information and then exit. All other options will be ignored.

-f filename
jdis will disassemble filename. Filename must be a compiled java class.

SEE ALSO

VFind, CIT, THD, UAD, BHead

BUGS

Please report all bugs to support@cyber.com. Make sure to include the version of JDIS, the
platform and OS,the script or command used (including, if possible, the compiled java class),
the complete output showing the bug, a short description of the problem, and contact
information.

COPYRIGHT

Copyright 1996-2017 by CyberSoft, Inc. All rights reserved.

CyberSoft, Inc. May 2017 JDIS

VSTK Manual 5th Edition 139 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Visual Scan

CyberSoft has always provided advanced graphical user interfaces for those users who want the ease
of a GUI under Unix/Linux and Microsoft Windows. CyberSoft is committed to meeting all
technological demands and remaining on the forward edge of technology. This is version 1.4, having
advanced from X-windows XView, Motif, TCL/TK, HTML to our latest offering using advanced C+
+ with Qt.

Visual Scan provides more functionality than ever before while maintaining an easy to understand,
intuitive interface with advanced features. Features include scanning, log file management,
quarantining, scheduling, automatic updates and system integrity management all from one interface.

Visual Scan is cohesive and well integrated, making it easy to get started and leverage VSTK's core
functionality to work for the user.

Example Script for Visual Scan

#!/bin/sh

Wrapper script for the visual-scan GUI for vfind

PATH=/usr/bin:/usr/sbin:/bin:/sbin

export PATH

VSTK_HOME=/opt/vstk

export VSTK_HOME

exec $VSTK_HOME/programs/visual-scan "$@" >/dev/null 2>&1

VSTK Manual 5th Edition 140 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Visual Scan screen shot - Start Up Page

VSTK Manual 5th Edition 141 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Visual Scan Help screen shot – Automatic Diagnostics Panel

VSTK Manual 5th Edition 142 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Visual Scan screen shot - Updates

VSTK Manual 5th Edition 143 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Visual Scan screen shot – Preferences

VSTK Manual 5th Edition 144 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Simple Virus Scanning Protocol (SVSP)

SVSP PROTOCOL

SVSP SOURCE CODE EXAMPLE

SVSP FAQ

VSTK Manual 5th Edition 145 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

SVSP Protocol

CyberSoft Operating Corporation Simple Virus Scanning Protocol (SVSP)
Copyright CyberSoft Operating Corporation, May 2017.

This document is based upon the Manual pages delivered with the VSTK product along with
new sample code. Please note that some aspects of this protocol may not exist in older
versions of the program. Enhancements to the protocol are made on a regular basis. It should
be noted that VFindD supports multiple protocols in addition to SVSP.

NAME

SVSP - Simple Virus Scanning Protocol

DESCRIPTION

SVSP allows a client to send data files to a server for virus scanning. The protocol is a simple
text based query/response, with asynchronous responses allowing simultaneous queuing of
multiple files.

COMMANDS

[id] = customer defined identifier

[id] ENABLE <option>
Set a flag

[id] ENABLE <option> <value>
Add an option

[id] DISABLE <option> <value>
Clear a flag, remove options

[id] SCAN /<how> /<what> <args>
Scan data for viruses

[id] QUIT
Close and disconnect

OPTIONS

Options control details of the scanning process.

VSTK Manual 5th Edition 146 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

IGNORE <virusname>
Don't report this virus.

EXCLUDE <filename>
Don't scan this file.

EXPAND <expander>
Use this expander in UAD (* means all).

RECURSE <limit>
Expand composite files and directories recursively to the limit.

ORIGINAL
Scan original collection or compressed file as well as its components.

HTML [1-3]
HTML to text conversion level.

MAIL
UAD email mode.

DATA SOURCE

The /<what> tells the source of data to scan.

/REQUEST <filename>
Client connects to server port.

/PORT <portnum> <filename>
Server connects to client port.

/FILE <filename>
Scan data from file/directory.

/FILE-SHA1 <filename>
Scan data from file (& need its SHA1 hash).

/DATA bytes
Data sent inline, after SEND response (none) Inline as above, until socket closing.

Note: Only /FILE is implemented by the first version of the VFindD daemon.

VSTK Manual 5th Edition 147 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

DATA FORMAT

The /<how> indicates the format of the data to scan.

(none)
Raw data to be scanned.

/SS
SmartScan.

/LIST
Newline separated list of filenames/directories.

Note: Only raw data is implemented by the first version of the VFindD daemon.

RESPONSES

[id] = customer defined identifier

The client should recognize these responses:

[id] READY
Initial connection prompt.

[id] DENIED
The connection is denied/blocked.

[id] OK
Command accepted (option enabled, etc).

[id] QUEUED
File queued for later scanning.

[id] Exxxxx message
Command failed (errno name).

[id] SEND <portnum>
Server provided port for scanning (from /PORT).

[id] SEND
Server is ready to receive data inline (from /DATA).

[id] SCANNING <filename>
File scan started.

VSTK Manual 5th Edition 148 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

[id] INFECTED <virusname> : <filename> : <message>
File is infected.

[id] DONE <viruscount> : <filename>
File scan is complete.

[id] DONE <viruscount> : <filename> : <SHA1-Hash>
File scan is complete (for SCAN/FILE-SHA1).

ERRORS

A specific subset of errno names may be returned to indicate errors

EINVAL
Invalid argument.

ENOTSUP
Argument or option not implemented.

EACCES
File or directory could not be read.

ENOENT
File or directory does not exist; no connection to port.

EAGAIN
Server temporarily out of resources.

EFAULT
Server internal error.

NOTES

Commands may be prefixed by a numerical identifier, if so, the responses to that command
will be prefixed by the same identifier. Filenames in command should not contain any
quoting; file names in responses are quoted with double quotes; internal double quotes and
backslashes are escaped with a backslash, newlines as \n.

After a SCAN command, SCANNING and possibly INFECTED responses are sent for each
part of an archive/directory; for archives, the filename is then indicated as "archive" -> "part".

A QUEUED response may be sent if the scanning is delayed.

VSTK Manual 5th Edition 149 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

A DONE response is sent when all the parts of the scan request are complete. A client should
not send additional SCAN commands until it has received a QUEUED, DONE, or Exxxxx
response for the request.

A RECURSE limit of 0 implies unlimited (this is the default, if enabled).

For the IGNORE option, the virusname is as the virus name appears in the INFECTED
response, e.g., CVDL W32/Nimda.E

If the EXPAND option is used without the expander value, UAD is initiated with the default
set of active expanders. The list of expanders and their default state are: tar (on), Z (on), gz
(on), text (on), HTML (off), zip (on), TNEF (on), Hqx8 (on), RAR (on), CAB (on).

EXAMPLES

VSTK Manual 5th Edition 150 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

BUGS

Please report all bugs to support@cyber.com. Make sure to include the version of VFindD,
the platform and OS, the script or command used, the complete output showing the bug, a
short description of the problem, and contact information.

COPYRIGHT

Copyright 1991-2017 by CyberSoft, Inc. All rights reserved.

CyberSoft, Inc. May 2017 SVSP

VSTK Manual 5th Edition 151 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

SVSP Sample Source Code

The following sample source code in the C language is intended to be a starting point for
anyone who wants to implement the SVSP protocol with VFindd.

#include <time.h>

#include <stdio.h>

#include <errno.h>

#include <ctype.h>

#include <fcntl.h>

#include <string.h>

#include <limits.h>

#include <stdlib.h>

#include <unistd.h>

#include <alloca.h>

#include <sys/types.h>

#include <sys/stat.h>

...

...

...

#ifdef CONF_OS_WIN32

#define LOCALHOST "127.0.0.1"

#else

#define LOCALHOST "localhost"

#endif

...

...

int

vf_init(const char *const *argv)

{

...

...

if (!servers_connected())

connect_server(NULL, LOCALHOST);

VSTK Manual 5th Edition 152 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

if (!servers_connected()) {

printf("##==>>> No server connected -- exiting\n");

fflush(stdout);

exit(1);

}

...

...

return 1;

}

...

...

...

struct queue_data {

struct queue_data *next;

int pending_requests;

const struct vfconf *config;

int result;

struct vfstat *vfstat;

int sock;

void *user;

};

struct per_request {

const char *file name;

struct queue_data *queue_data;

};

static int

handle_scan(int server,

char *text,

int size,

int id,

void *ptr)

VSTK Manual 5th Edition 153 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

{

char buf[BUFSIZ];

struct per_request *request = ptr;

struct queue_data *q = request->queue_data;

char *file name, *virus, *message;

int bytes, error = 0;

int waiting = 0;

int file;

char *args;

char *end;

int count;

long port;

int channel;

#ifdef DEBUG_CLIENT

fprintf(stderr, "HANDLE %d: '%d %s'\n", size, id, text);

#endif

args = nextword(text);

text = trim(text);

args = trim(args);

if (q->pending_requests <= 0) {

unexpected("SCAN", "No pending requests", NULL);

goto done;

}

/* FIXME: break up in separate functions ? */

if (strcasecmp(text, "QUEUED") == 0) {

set_available(server);

return 0;

}

if (strcasecmp(text, "SCANNING") == 0) {

++q->vfstat->total_file_count;

announce_check(q->sock, args, q->user);

VSTK Manual 5th Edition 154 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

return 0;

}

if (strcasecmp(text, "DONE") == 0) {

if (split3(&virus, &file name, NULL, args)) {

count = (int) strtoul(virus, &end, 10);

if (count < 0 || *end != '\0') {

unexpected("SCAN", text, virus);

count = 0;

}

announce_done(q->sock, file name, count, q->user);

if (q->vfstat != NULL) {

q->vfstat->total_virus_count += count;

}

}

else {

unexpected("SCAN", text, args);

}

goto done;

}

if (strcasecmp(text, "INFECTED") == 0) {

if (split3(&virus, &file name, &message, args))

announce_found(q->sock, file name, virus, message, q->user);

else

unexpected("SCAN", text, args);

return 0;

}

if (strcasecmp(text, "SEND") == 0) {

if (args == NULL) {

unexpected("SCAN", "SEND: missing port (NYI)", args);

goto done;

}

VSTK Manual 5th Edition 155 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

port = strtoul(args, &end, 10);

if (*end != '\0' || port < 0 || port != (unsigned short) port) {

unexpected("SCAN", "SEND: bad port", args);

goto done;

}

#ifdef DEBUG_CLIENT

fprintf(stderr, "Delivering '%s' to port %d\n",

request->file name,

(int) port);

#endif

file = open(request->file name, O_RDONLY);

if (file < 0) {

perror(request->file name);

goto done;

}

for (;;) {

error = channel = open_channel(server, (int) port);

if (channel >= 0)

break;

if (!is_temporary(error)) {

printf("##==>>> SCAN channel failed: %s\n", strerror(-error));

}

if (communicate() == 0) {

if (option.quiet < 1 && !waiting++)

printf("##==> Waiting for response from server\n");

throttle();

}

}

for (;;) {

bytes = read(file, buf, sizeof buf);

if (bytes < 0) {

printf("##==>>> SCAN read failed: %s\n", strerror(-error));

error = bytes;

break;

VSTK Manual 5th Edition 156 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

}

if (bytes == 0) {

#ifdef DEBUG_CLIENT

fprintf(stderr, "Delivered '%s' to port %d\n",

request->file name,

(int) port);

#endif

error = 0;

break;

}

error = send_command(channel, buf, bytes);

if (error < 0) {

printf("##==>>> SCAN channel SEND failed: %s\n",

strerror(-error));

break;

}

if (error < bytes) {

unexpected("SCAN", "SEND", "not all data received");

break;

}

if (communicate() == 0)

break;

}

close(file);

if (error < 0)

goto done;

error = close_channel(channel);

if (error < 0)

goto done;

return 0;

}

error = errmsg(text);

if (error < 0) {

VSTK Manual 5th Edition 157 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

printf("##==>>> SCAN command failed: %s, %s\n",

strerror(-error),

args);

goto done;

}

unexpected("SCAN", text, args);

 done:

...

...

...

if (request != NULL) {

if (request->file name != NULL)

free((char *) request->file name);

free(request);

}

count = --q->pending_requests;

#ifdef DEBUG_CLIENT

fprintf(stderr, "REQUEST COMPLETE, %d PENDING\n", count);

#endif

...

...

return count >= 0;

}

static int

scan_request(const char *file name, int status, void *data)

{

int use_local = option.localhost;

struct queue_data *q = data;

const struct vfconf *config = q->config;

VSTK Manual 5th Edition 158 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

struct per_request *request = NULL;

const char *failure = NULL;

int id, server = -1;

int waiting = 0;

int error;

if (filematch(file name, config->noscans)) {

if (option.quiet < 1)

printf("##==> Not scanning: \"%s\"\n", file name);

return 0;

}

if (status < 0) {

error = status;

failure = file name;

goto fail;

}

if ((status & WALK_LINK) &&

((!config->follow_symlinks && (status & WALK_DIR)) ||

(config->ignore_symlinks && (status & WALK_FILE)))) {

if (option.quiet < 1)

printf("##==> Not scanning: \"%s\"\n", file name);

return 0;

}

if (use_local && file name[0] != '/') {

if (option.quiet < 1)

printf("##==>> Ignoring --localhost for relative file name\n");

use_local = 0;

}

if ((status & WALK_DIR) && !use_local) {

return 1;/* Nothing more to do, all handled inside walk() */

}

VSTK Manual 5th Edition 159 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

error = server = select_server();

if (server < 0) {

failure = "select_server()";

goto fail;

}

set_busy(server);

error = set_options(server, q->config);

if (error < 0) {

failure = "set_options()";

goto fail;

}

/* free() called in handle_scan()

 */

request = calloc(1, sizeof *request);

if (request == NULL) {

error = -ENOMEM;

failure = "vf_scan()";

goto fail;

}

request->file name = strdup(file name);

if (file name == NULL) {

error = -ENOMEM;

failure = "vf_scan()";

goto fail;

}

request->queue_data = q;

for (;;) {

id = request_id(server, request, handle_scan, &q->result, "SCAN");

if (id < 0 && is_temporary(id)) {

if (communicate() == 0) {

if (option.quiet < 1 && !waiting++)

printf("##==> Waiting for response from server\n");

throttle();

}

VSTK Manual 5th Edition 160 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

continue;

}

if (id < 0) {

error = id;

failure = "request_id()";

goto fail;

}

break;

}

error = send_commands(server,

"%d SCAN/%s %s\r\n",

id,

use_local ? "FILE" : "REQUEST",

file name);

if (error < 0)

goto fail;

++q->pending_requests;

#ifdef DEBUG_CLIENT

fprintf(stderr, "NEW REQUEST, %d PENDING\n", q->pending_requests);

#endif

return !(status & WALK_DIR);/* SCAN/FILE recurses on the server */

 fail:

if (server >= 0)

set_available(server);

if (request != NULL) {

if (request->file name != NULL)

free((char *) request->file name);

free(request);

}

if (failure != NULL) {

errno = -error;

perror(failure);

VSTK Manual 5th Edition 161 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

}

return error;

}

...

...

...

static struct queue_data *queue = NULL;

...

...

...

int

vf_queue(const struct vfconf *config,

int sock,

const char *file name,

FILE *file,

long size,

int type,

struct vf *vf,

struct vfstat *vfstat,

void *user)

{

int error;

struct queue_data *next;

if (queue != NULL && queue->pending_requests <= 0) {

while (queue->next != NULL && queue->next->pending_requests <= 0) {

next = queue->next;

queue->next = next->next;

free(next);

}

}

else {

next = queue;

VSTK Manual 5th Edition 162 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

queue = calloc(1, sizeof *queue);

if (queue == NULL)

return -ENOMEM;

queue->next = next;

}

queue->config = config;

queue->vfstat = vfstat;

queue->sock = sock;

queue->user = user;

switch (type) {

case VF_FILE_SCAN:

error = process_file(file, file name, config, queue);

break;

...

...

...

...

default:

error = -EINVAL;

}

if (file != NULL)

fclose(file);

return error;

}

...

...

VSTK Manual 5th Edition 163 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

SVSP Frequently Asked Questions
All answers tested in VSTK-179

1) User has verified that the data that they sent to the VFindd socket was read using truss,
however, VFindd didn’t seem to process all of the data. Sometimes sending more commands to
VFindd would cause the unprocessed commands to process. A work around is to send a new
line, which causes the commands to be processed.

CyberSoft recognized that the situation happens when a user uses telnet to send multiple scan-
requests to VFindd at the same time, but it does not happen when users use VFindC (VFind-
Client) which is provided as the default client. The source code example provided with this
document is from the working VFindc program.

The cause of this situation is if the user tries to send multiple SVSP-commands on one request.
Basically, VFindD handles the requests from a client using event (request)-driven-approach
to optimize its performance for scanning and reduce some additional loads, which are not
directly related to its scanning operation. The VFindD program uses a new-line ("\r\n" or
"\n") as its parsing delimiter to recognize a valid SVSP-command in the stream. In other
words, the scan-procedure (or any responses) on VFindD is invoked only when a new request
from a client has arrived on the socket.

If a request arrives at VFindD through a socket, VFindD reads all the data on the socket and
saves it to its queue. VFindD then picks-up one request from the queue to start scanning.
This situation is good under the situation when one request has one SVSP-command. Of
course, a client can send multiple requests without any problem if each request has one
command but if a client tries to send multiple SVSP-commands in one request, the user may
meet a "buffered scanning situation". Since one request will invoke one scan even though the
remaining commands are still in the queue, the second command which was in the first
request may need to wait for the next new request to be run in a FIFO manner.

We recommend that a client sends one command per request but the user can send multiple
requests on the same socket. This approach was already implemented in VFindc (VFind-
client) and it can be easily implemented by users in different programming languages. The
only exceptional case in which this approach may not be easy is the situation in which a
customer uses telnet to send files/directories to VFindD. That is because the "telnet" requests
users to input all data manually and there is no room for a user to implement the
logic/approach recommended above. In this case, CyberSoft recommends that a user gathers
all the files in one directory and send the directory name as one request. Following are
examples of two possible cases of a "buffered scanning situation". This example is for one
request with five commands.

VSTK Manual 5th Edition 164 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

[1] Case #1

Added a new-line ("\r\n"-> Pressing "Enter" when editing a request) at the end of every
command when he/she edits the ONE request as follows.

SCAN/FILE /dummy/file1.txt

SCAN/FILE /dummy/directory1

SCAN/FILE /dummy/file2.txt

SCAN/FILE /dummy/directory2

SCAN/FILE /dummy/file3.txt

Operations on VFindD

When the ONE request (including five commands) arrives at VFindD (socket), VFindD reads
all the data in the socket. All five commands (as a ONE request) were saved in the daemon-
queue, and the event-handler invokes scan-process for the request in the queue. After parsing
the request using the new-line delimiter ("\r\n" or "\n"), the first command is recognized as a
formal command from the client and started its scanning. The other four commands are still
in the queue and wait for the next request from the client. The next request may be a formal
command or just new-line ("Enter"), and the commands in the queue start scanning
(eventually) on a FIFO-basis. The request to invoke the event-handler should be from a
client.

[2] Case #2

No new-line ("\r\n") at the end of every command when the user edits the ONE request as
follows.

SCAN/FILE /dummy/file1.txt SCAN/FILE /dummy/directory1 SCAN/FILE /dummy/file2.txt
SCAN/FILE /dummy/directory2 SCAN/FILE /dummy/file3.txt

=> Operations on VFindd

VFindD sends the "ENOENT" error message to the client, which means "The file or directory
does not exist", and waits for the next valid request on the socket. That is because there is no
parsing delimiter (new-line) at the end of each command, (after reading and parsing the data)
VFindd considers the data/stream in the request as follows.

VSTK Manual 5th Edition 165 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

- "SCAN/FILE" ==> The formal (and first) SVSP command, and

- All the remaining data after the "SCAN/FILE"==> file/directory name. It is because there
is no newline at the end of one command. Of course, there is no file/directory-name like
"/dummy/file1.txt … SCAN/FILE /dummy/file3.txt", and VFindd sends "ENOENT" message to
the client, which means "File or Directory does not exist."

2) VFindD misses QUEUED responses.

Unlike the "SCANNING","DONE" or "Exx.. (Error names)", the "QUEUED" response from
VFindd-mt may not be sent to the client especially if the user chose to use the multi-threading
option with many threads and many files. So, do not use the "QUEUED" response as a
trigger index for another action in the application.

The reason is that (under multi-thread environment) the thread for adding target files to the
internal scan-queue and the thread(s) to pop-up the task from the queue (and start the scan a
file) are different threads. After target files are added to the scan-queue by the main thread,
other new created threads try to pop-up each task from the queue and start scanning. The
order of adding the files to the scan-queue is independent of the order for pop-up (and
scanning) the files by new thread by the operating systems kernel's thread scheduler.

The main thread takes the file names and adds them to the scan-queue. Then it does some
internal logging procedure, and then tries to send the "QUEUED" response to the client if the
task (file) in the scan-queue is still in the queue, in other words, it has not started scanning.

In most cases, especially if the number of target files is big (which means the number of newly
created threads is big), the "QUEUED" message is sent to the client to inform that the
task/file was queued for scan, however in some cases, the "QUEUED" message may not be
sent to the client, because the queued task/file was popped quickly by another thread and
started scanning BEFORE the main thread could check if the task is still in the queue. When
the main thread checks the status, if the task is already popped and started scanning, the main
thread does not send the "QUEUED" message because the file is not in QUEUE, it is in
process.

3) Sending bad commands or random data causes VFindD to crash.

Problem does not exist. VFindD sends an "EINVAL" message to the client, which means
"Unrecognized command", and waits for the next request. CyberSoft has not been able to
cause it to crash using bad commands or random data. Example:

VSTK Manual 5th Edition 166 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

telnet 127.0.0.1 8081(==> VFindd-mt on port 8081)

Trying 127.0.0.1...

Connected to localhost.localdomain (127.0.0.1).

Escape character is '^]'.

READY

wrongCommand (==> unimplemented command)

EINVAL Unrecognized command: wrongCommand(==> EINVAL from VFindd-mt)

SCAN/FILE /opt/vstk/README.txt

QUEUED

SCANNING "/opt/vstk/README.txt"

DONE 0 : "/opt/vstk/README.txt"

As can be observed from this test, a user is not able to cause VFindD to crash by sending it
bad commands. Further tests show that sending random data also does not cause it to crash.
CyberSoft is has not been able to create this problem with any version of VFindD, however if
using a version prior to VSTK-T 179, an unsupported obsolete version is being used. Please
upgrade.

4) If the VFindD process receives a request to scan a nonexistent file the client request to close
the connection is not handled gracefully.

VFindD sends a "ENOENT" message to the client, which means "File or Directory does not
exist", and waits for the next request. Example:

telnet 127.0.0.1 8081

Trying 127.0.0.1...

Connected to localhost.localdomain (127.0.0.1).

Escape character is '^]'.

READY

SCAN/FILE nonexist

QUEUED

ENOENT "nonexist" (==> ENOENT from VFindd-mt)

As can be seen from this test, the user is not able to cause VFindD to fail in any way by
sending it a request to scan a nonexistent file.

VSTK Manual 5th Edition 167 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

5) VFindD appears to create Zombie threads.

All the threads generated from the process (VFindD-MT) are terminated if the process
(VFindD-MT) is terminated. Please check if another VFindD-MT was invoked on different
port(s) and they are not terminated.

6) How many copies of the VFindD daemon can I run at the same time?

As many as the system has resources for. Multiple VfindD(s) can be run on different ports
with "--SVSP-port=" option. Without this option, VFindD uses 8081 as its default port to
listen the SVSP-connection.

7) Are there other APIs beyond SVSP?

Yes, but SVSP is the one that CyberSoft recommends. CyberSoft also supports APIs that are
unpublished for specific customers and CyberSoft supports the ClamAV API for use of
VFindD with open source programs that conform to the ClamAV API. The specific API
CyberSoft uses for ClamAV is now obsolete but still works for those programs that use the
older API. In the future this API will be brought up to date.

8) What is the difference between SCAN/REQUEST and SCAN/FILE?

The SCAN/REQUEST command was designed for a situation when the server (VFindD) is on
a remote machine. In other words, the “SCAN REQUEST” command is for when the files to
be scanned and the VFindd server are on different machines. While the "SCAN/REQUEST"
command can be used for a client on the same machine it causes VFindd to perform
additional work which is not necessary for "local' files. If the client is on the same machine
with VFindD, CyberSoft recommends customers to use "SCAN/FILE" command, which does
not consume additional hard-disk resources.

VSTK Manual 5th Edition 168 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Pattern Matching Using VFind and
the CVDL Language

The Leader In Total Security Solutions For
Linux, UNIX and Mac OS X

● Anti-Virus
● Baseline Control
● Crypto Cracking
● Pattern Analysis
● Computer Forensics
● Operational Monitoring
● Self-Healing and Repair
● CommandLine or WebBased

by: Richard J. Perry and Peter V. Radatti

Copyright© May 2017 by CyberSoft Inc. All rights reserved.

VSTK Manual 5th Edition 169 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

CVDL Chapter Outline

Chapter 1: Introduction

1.1 Pattern Analysis for Computer Security

1.2 Overview

1.3 A Note on the Examples

1.4 Exercises

Chapter 2: Using VFind

2.1 VFind Command–Line Options

2.2 CyberSoft VDLs

2.3 Using UAD with VFind

2.4 Exercises

Chapter 3: Basic CVDL

3.1 Pattern Size Limit

3.2 VDL Format

3.3 Strings

3.4 Concatenation and Offsets

3.5 Entropy and Serial Correlation

Chapter 4: VFind Scan Engines

4.1 vdl Engine

4.2 vdlc Engine

4.3 vdlm Engine

4.4 jadevdl Engine

4.5 MD5/CIT Engine

4.5.1 Hash Theory and Collisions

4.6 Exercises

Chapter 5: CBayes Scan Engine

5.1 Bayesian Classification Theory

5.1.1 Token Probabilities

5.1.2 Overall Probability

5.2 Text Tokenization and Hashing

5.3 Examples

5.4 Exercises

Chapter 6: Low–Level CVDL

6.1 Low–level Or

6.2 Byte Expressions

6.3 Set Expressions

6.4 Fuzzy Expressions

6.5 Repetition Expressions

6.6 Indefinite Offsets

6.7 Absolute Offsets

6.8 Offset Groups

6.9 Exercises

Chapter 7: CVDL and Text

7.1 White space

7.2 White space (shell)

7.3 White space and Punctuation

7.4 Skipping White space and Punctuation

7.5 Wildcard White space

7.6 Digits

7.7 Only Digits

7.8 Floating–point Comparison

7.9 Exercises

Chapter 8: High–Level CVDL

8.1 AND and OR

8.2 XOR and NOT

8.3 File Size Operator

8.4 File Name Operator

8.5 Exercises

Chapter 9: CVDL and Regular Expressions

9.1 Regex Operator

9.2 Trigger Data

9.3 Summary of Basic Regular Expressions

9.4 Summary of Extended Regular
Expressions

9.5 Exercises

VSTK Manual 5th Edition 170 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Chapter 10: CVDL Macros

10.1 Defining VDL Macros

10.2 Using VDL Macros

10.3 VDL Macro Examples

10.4 VDL Macro Storage Advantage

10.5 Exercises

Chapter 11: CVDL Meta Operators

11.1 File Type Restriction Directives

11.2 VDL Version Reporting

11.3 VDL start/limit specification

11.4 VDL notell specification

11.5 Meta VDLs

11.6 VDL sticky and clear specifications

11.7 Exercises

Chapter 12: CVDL Syntax Summary

12.1 Top–Level CVDL

12.2 Low–Level CVDL

12.3 CVDL Data

12.4 Regex Trigger Data

12.5 Exercises

Chapter 13: Performance and Testing

13.1 Testing Basics

13.2 Fast/Parallel Search

13.3 Case–Insensitive Fast/Parallel Search

13.4 Exercises

Bibliography

VSTK Manual 5th Edition 171 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Chapter 1 Pattern Analysis

Introduction

1.1 Pattern Analysis for Computer Security

This introduction1 is somewhat philosophical in nature but sometimes that is exactly what is
needed to convey meaning. Peter’s belief is that after these concepts have been learned, a new
concept of pattern analysis can be developed. Pattern analysis is not the “end-all” of computer
security but it is a very big hammer. Sometimes (often), when a big hammer is at the user’s
disposal, other methods just don’t matter. What works, works!

Most of computer security is about being able to tell the good from the bad. This is called
pattern analysis. To a certain extent everyone does pattern analysis. When a person looks at
an orange and recognizes it as such, their brain just did pattern analysis. The brain interpreted
what the eyes saw, compared it to known objects, rejected things that were similar but not “it”,
and arrived at an answer. In fact, the brain may have been wrong. It may not have been an
orange but a tangerine. The ability to tell the difference between oranges and tangerines
requires additional parameters that might not be available.

If thought about clearly, pattern analysis may be seen as an overwhelming problem that is
usually done wrong. Two examples where pattern analysis was done wrong that changed the
course of human history were Pearl Harbor in Hawaii and the World Trade Center in New
York City.

The raw information for these events was available, but they were not able to be put together
to make a picture until it was too late. Hindsight is 20-20. Think of the problem like a one
million piece puzzle, that when arranged, could make over a thousand different images,
depending on how the pieces were arranged. When looking at a million pieces, the end picture
is not previously known or given, and must be interpreted or thought of by the creator, with
what they are able to find. As the puzzle is put together, new pieces are found, and perhaps a
different picture is formed or found to be more important than the original, whether in reality
or in perception. No part of this process is right or wrong, correct or incorrect, because the
problem and solution are nebulous, constantly changing. Only once an end is known, can the
pieces be put together in that means. But if the end couldn’t have been imagined previous to
the end, it will not be found until an external force makes it occur. This is the case with both
Pearl Harbor and the World Trade Center. Nobody thought that these events were possible. It
was unthinkable, unimaginable. But once an external force came along, and caused that
terrible end, the pieces could later be found figure out how the event happened. This would be
something that previously would have been considered an unknown unknown, but is now a
known unknown.

1 P. Radatti, “Pattern analysis for computer security. ” http://cybersoft.com/, whitepapers.

VSTK Manual 5th Edition 172 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

It is now known that the puzzle builders did not know of these possibilities, but at the time, the
puzzle builders did not know that they did not know this was a possibility.
In both cases, the information necessary to predict and prevent these events existed prior to the
event, but was lost in the noise. That is because in real life, pattern analysis is a very difficult
problem. The volume of data itself makes it difficult and frequently what patterns to look for
are not known or recognized until it is too late. Fortunately, this work is about digital pattern
analysis where the problems of volume and hindsight are still large but within the realm of the
possible.

There are two aspects to volume making problems complex. The first is that a whole lot of
“stuff” needs to be processed. The second is that given large volumes of data, patterns the
user is looking for will naturally occur as a misidentification. This is actually related to the
well known postulate that an infinite number of monkeys typing on an infinite number of
typewriters will eventually reproduce the entire works of Shakespeare. It is, however,
different because when dealing with an infinite number, everything is possible. In computer
security everything is finite even if it seems infinite from a practical point of view. An
example of this is that many digital photos are 640 by 480 pixels which yield a total of
307,200 pixels. Using 256 colors, the number 256307200 is derived. This number represents
every single photo that has ever been taken or will ever be taken at that size. It contains every
picture of every face, building, animal, aliens on distant planets, in fact anything that can be
contained in a photo of that size. This number is finite but still so large that it becomes
meaningless.

When a pattern exists but is not found, it is called a miss. Pearl Harbor and the World Trade
Center were misses. When a pattern is correctly found it is called a hit. An example is when a
virus scanner finds a virus. When a pattern is found but it is not correct it is called a false hit.
There are several types of false hits, including a special type called a “ghost hit”. An example
of a false hit is when a virus scanner detects a virus that is not there. An example of a ghost is
when a virus scanner detects a virus that was disinfected. The virus is actually there but moot.
There are excellent reasons to want to know when ghosts are present but it is most useful to
know they are ghosts.

In 1988 Peter wrote a program called “ring toss”. Peter named it that based on the backyard
game called quates where a person tosses a ring onto a stake in the ground. It is basically the
game horseshoes, but with rubber rings. The object of the program is to find all of the letters
in a complex sentence in positional order within a single file. Peter had an entire server to run
the program against. What Peter found was that many files triggered the ring toss program as
a hit. When the files were examined, it was discovered that the program was detecting was
data below the noise level. In reality, there was no hit. The pattern was complex and long,
and the amount of data to search was finite.

There was no significant data in the detected files but the way the program was looking for the
given pattern gave false hits. This brings about the point that the way in which a pattern is
looked at matters.

VSTK Manual 5th Edition 173 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

The problem of volume exists in computer security. The volume of data is much smaller than
in the real world, but still very large. The issue is that users are looking for patterns that are
small. Many computer viruses are only about 60 bytes long! Trojan Horses and Worms can be
much longer. Lexical patterns are rarely more than 300 bytes long. The ratio of the pattern
size to the volume of data to be searched is critical to the difference between a hit and a false
hit. To avoid false hits, the pattern size and complexity needs to increase when the volume of
data to be searched increases. When looking for a virus, the user is limited by the maximum
size of the virus so additional data such as target file identification and pattern location
become meaningful.

Peter calls pattern complexity “data richness”. For example, the pattern zero, zero repeated a
few hundred times is not data rich. There is no statistical significance to the pattern. In fact,
this exact pattern will false hit on almost all executables since many executables set aside
variable space using the byte value zero.

What has just been said is that pattern analysis is a game of statistics. The pattern to be
searched needs to have a significant length and needs to have significant data richness IN
RELATION to the target files that need to be searched. In addition, the pattern must be
searched for in a way that is appropriate for the problem at hand. Do any of this wrong, and
there will be a false hit.

Another view is that pattern analysis is puzzle solving. There are many different types of
parameters that can add data richness beyond the actual pattern. For example, if a user knows
that the specific pattern they are interested in can only validly exist in a file of a specific type,
the user can increase the data richness of the pattern master by restricting its use to files where
the pattern can exist. This also helps to reduce false hits because if a matching pattern does
exist in a file of the wrong type it will not be flagged. Positional information can also be of
value when enhancing data richness. For example, if a pattern only exists at a specific
location in a file, restricting the search for that pattern to where it can exist positionally in the
file enhances data richness.

The next part of understanding pattern analysis is that it really exists as two separate problems.
The first is to create the master search pattern, “The thing to look for.” This is not always
obvious or easy. The second is to find the master pattern in target files. This is actually a
different set of problems which require different skills. An example is that the analyst who
detects a virus for the first time and writes the master pattern can be a different person from
the person who wrote the program that executes the master pattern. They are almost always
different from the people who run the program in the field.

VSTK Manual 5th Edition 174 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

The good news for the mathematically challenged is that they do not need to know statistics to
do this well. In fact, certain people with mental problems do this well. In the movie, “A
Beautiful Mind” about Dr. John Forbes Nash, Jr. the viewer sees scenes where Dr. Nash sees
patterns that don’t exist. The problem as told in the movie was that sometimes with
schizophrenia it can be hard to tell the difference between a hit and a false hit. (The movie
was not a true representation of the problem Dr. Nash and others suffer but is a good example
to make this point.)

Another type of mental condition that seems to make people good at pattern analysis is
Attention Deficit Hyperactivity Disorder, ADHD. Some people with ADHD trained in pattern
analysis can see the patterns they are looking for. In one case, Peter found an ADHD person
with a high IQ who was a natural talent at creating pattern masters.

So far, only simple pattern masters where there is a near one to one correspondence between
the pattern master and the search pattern have been discussed. There are additional types of
pattern masters which can match valid patterns where the exact pattern is unknown in
advance. A simple example of that would be searching for the pattern, “hello” and it is known
that some people might spell the word “hello” with the number zero in the letter–O place or
the number one in the letter–L place. Of course they may use any or every combination of the
above. (This is common for people who learned to type before computers.) A pattern master
for a pattern of that type could be described verbally as:

Search for the letter ‘h’ while ignoring case.
Search for the letter ‘e’
Search for the letter ‘l’ or the number ‘1’
Search for the letter ‘l’ or the number ‘1’
Search for the letter ‘o’ or the number ‘0’

This is a very simple little pattern master yet it can detect 16 actual patterns, all of which are
valid. Add the ability to ignore white space between letters or search for a prefix and postfix
of white space and the data richness is still increased while the number of actual patterns that
can be detected increases substantially. Peter defines techniques that deal with this problem as
“pattern looseness”. Again, while pattern looseness opens the number of patterns that can be
found with a single master, data richness dictates that false hits cannot be included!

An area where pattern looseness is extremely useful is when trying to detect a member of a
family of data. Most commonly, this is to detect a new member of a family of computer
viruses such as the Bagle virus. It is, of course, extremely valuable to be able to have a pattern
master that detects all or most of the members of a family. Imagine when a new strain of the
Bagle virus is released and even before it becomes known, it is already detected by a family
pattern master that included enough looseness to detect it! Pattern looseness also has
applications in the biological sciences and in lexical analysis such as preserving secrets.

VSTK Manual 5th Edition 175 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Another area of study in pattern analysis is data enhancement through transitional formatting.
Peter believes that he implemented the first transitional pattern analysis engine in VFind in
1999 when CyberSoft noted that pattern masters of Java byte code were not reliable because
of the way the Java system itself worked. The solution was to create a transitional engine that
prepared the data for pattern analysis.

In the case of the Java byte code, CyberSoft created a fast, light disassembly system that
processed the binary byte code into reliable and easily searched disassembly code. This is
backward from a straight pattern search because instead of modifying the pattern master the
user modifies the data being searched. Transitional formatting of data to enhance pattern
analysis is a very powerful and effective valid tool that can reveal data when no other tool can.
Always remember to look at all sides of the problem!

Another aspect of transitional pattern analysis is the meta–data creation that is the transitional
phase of the problem. It is necessary to arrive at a transitional function that will process the
raw data into meta–data that by its nature lends itself to pattern analysis. This is not as easy as
it seems and sometimes the resulting meta–data can not be searched by a simple pattern master
but by an enriched pattern master that includes information about the resulting meta–data. An
example of this is when a CPU emulator is invoked to emulate a binary. For the purposes of
pattern analysis, this is most often used to detect attack programs such as viruses. The results
of emulation may be several useful patterns. The first may be a hexadecimal string of values
that have been decrypted or decoded by the emulated code. The second may be a string of
events that triggered flags in the emulator. For example, if a program generates a list of target
files and then modifies those target files, the setting of the emulator flags are useful
information in themselves. In fact, the user might generate separate pattern masters for a
problem of this type. The first is the decoded string of values. That can be a straight–forward
pattern master that is used solely against values provided to it by the emulator (Notice that
since the pattern master is only applied against results from the emulator, that data richness is
enhanced). The second is a pattern master that detects dangerous results of an emulated
program. In both cases, the results of the emulation must be interpreted. That interpretation is
also “pattern analysis”.

Another method of pattern analysis is straight statistical analysis such as the Bayes method. In
Bayes analysis, a database is created. The target is statically compared to the database to see
how closely it compares to the database. The higher the statistical probability that the target
under examination matches the contents of the Bayes database the better the chances are that
the target belongs to the class of targets in the database. The drawback to this is that
everything depends upon a properly created database. If the database contains flaws, then the
analysis will be flawed. This is why an unsolicited bulk e-mail (UBE) filter will have
problems detecting some e-mail as UBE while detecting desired e-mail as such. One of the
ways that CyberSoft solved the problem of the comparative database in the Bayes method was
to not directly rely upon human population of the database. This solution was implemented in
the CyberSoft Safe Internet Email product2 and found to be very successful.

2 SafeInternetEmail. http://safeinternetemail.com/.

VSTK Manual 5th Edition 176 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

CyberSoft creates pattern masters with both enough data richness and data looseness to detect
a good number of UBE messages. The result is still not good enough to significantly reduce
UBE messages from a reader’s perspective but it is good enough to populate the Bayes
database. The pattern masters and the Bayes method can then be applied against CyberSoft’s
target file synergistically. Notice that this is another form of transitional data. CyberSoft
created a pattern master which detected patterns which were then used as a method of
detection of other patterns. The universe of pattern analysis is only limited by imagination.

Just as a matter of clarification, only the CyberSoft implementation of Bayes pattern analysis
has been discussed, to determine if something is UBE or not. While this is the most common
use of Bayes, it is not limited to that. It can be used to determine if a target conforms to any
type of database. This is why VFind allows the user to create multiple Bayes databases and
CVDL programs. The user could create a database to determine if a target has a high
probability of being a terrorist communication, criminal communication or is in a specific
foreign language. For example, if a user creates a database that contains classical literature
written in Latin then they would have a way of determining if a target is a classical literature
written in Latin. If the user dumped a large amount of unspecialized communications written
in French, then they would have a way of detecting French. Put in a large collection of love
letters, and then love letters can be detected. The secret is that a user can statistically
determine if something conforms to the Bayes database. What the user puts in the database is
unlimited. Peter believes that a user could even put in the hexadecimal strings that compose
virus bodies and statistically determine if a target was a virus. There is no practical limit to
this technology.

The reader should note that so far that the use of pattern analysis for the purpose of hostile
software detection or UBE has been discussed (anti-virus professionals are very fussy about
the use of the term “computer virus” but the general public uses the term to mean any hostile
software program). Pattern analysis is not limited to these areas. Users can apply pattern
analysis to anything. One of the more interesting uses for pattern analysis is searching stock
market results real time looking for trends that can result in a gain for the operator. Pattern
analysis can also be used to determine if something is a forgery. In fact, if very large
databases of pattern analysis programs were developed, they could be used to analyze and
determine even very complex problems such as medical diagnosis or structural analysis. In
this view, pattern analysis is a way of capturing expert knowledge in a very specific and
highly usable way.

One of the esoteric aspects of pattern analysis is that the tools used define the pattern masters
used. Many end users create their own tools to solve single use pattern analysis problems.
More sophisticated users may use a language like Perl or Regex but there are significant
limitations to these languages, the most important limitation being that there are practical
upper limits to what these languages can perform, especially in the number of simultaneous
pattern masters that can be solved for. If there is only a small number of pattern masters or a
small amount of data to be targeted, then any size hammer will work.

VSTK Manual 5th Edition 177 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

On the other hand, if a pattern master is complex, is dependent upon other pattern masters,
requires a large number of simultaneous searches, uses Boolean logic or the user just has a
vast amount of data to search, then only a really big hammer will solve that problem.

Peter likes to think that the pattern analysis system that he designed and has been developing
since 1990 is the largest general purpose pattern analysis hammer in the world. It started out
life as a UNIX virus scanner but very quickly became a pattern analysis system for use with
lexical analysis.

It has continued to be enhanced over the years and is now capable of doing pattern analysis in
all fields. That tool is called VFind and is part of the VFind Security ToolKit family of
products. More information can be found about VFind at cybersoft.com.3

There is one more aspect of pattern analysis that is often overlooked by users. That aspect is
as important as the creation of the pattern master and often goes hand in hand with it. That
aspect is what to do with the knowledge created by the pattern analysis. In the event that the
knowledge is that the pattern fits a known virus, delete the virus. If it is UBE, do not forward
it. If the knowledge is more complex, knowing something does or does not match a pattern is
of no value without a plan for action. In the example given earlier, what would have happened
if the airport screeners had been able to recognize the terrorists who boarded the planes that
crashed into the World Trade Center but did not have a plan or authority to deal with them?
Peter’s guess is that they would have allowed them to board and the event would still have
happened. If, however, they had a plan to detain the terrorists, then the event would not have
happened. Sometimes even a simple plan is effective and almost always, any plan is more
effective than no plan.

1.2 Overview

This introductory chapter concludes with a note on the examples and some exercises.
Accompanying material includes examples.zip containing all of the example files, and a
CVDL (CyberSoft Virus Description Language) reference card.

Chapter 2 lists the VFind command line options and briefly discusses the CyberSoft VDLs
and use of UAD with VFind. Chapter 3 introduces enough basic CVDL to understand
Chapter 4 on the VFind scan engines. Chapter 5 is devoted to the CBayes scan engine, and
Chapters 6 to 12 form the major portion of this reference on CVDL. Chapter 13 concludes
with discussions and examples of performance testing.

3 CyberSoft Operating Corporation. http://www.cybersoft.com/

VSTK Manual 5th Edition 178 of 343

http://www.cybersoft.com/

VSTK Manual 5th Edition CyberSoft Operating Corporation

1.3 A Note on the Examples

Interactive examples were performed on a Sun/Solaris system using csh with prompt ‘%’. In
csh, ‘|&’ can be used to pipe both standard output and standard error into another program, so
many of the examples run VFind like this to limit visible output to just detections:

% VFind ...| & grep VIRUS
^^^
promptpipe stdout and stderr

The equivalent command using a Bourne shell is:
$ VFind ...2>&1 | grep VIRUS
^^^^^
promptmerge stderr with stdout

1.4 Exercises

1. Check the CyberSoft web site for updates on the VSTK ToolKit and virus definitions.
2. Check any website for text or binary information and create a VDL to match it. This is
more difficult than it may appear at first. (Think HTML)

VSTK Manual 5th Edition 179 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Chapter 2 Using VFind

2.1 CyberSoft VDLs

The VFind Security ToolKit, including programs and data files, is installed in a $VSTK
HOME directory, usually /opt/vstk/. In VSTK HOME, the sub-directory data/vfind/ contains
the master VDL list file vdl.list, and VDL files as described in Chapter 4. The CyberSoft
VDL files are written in plain text using the CVDL language, and may be examined as an aid
in learning to write custom patterns.

For most of the examples presented here, the VFind –liboff=’*’ option is used, which skips the
CyberSoft VDLs in order to focus on user–written VDLs.

2.2 Using UAD with VFind

In practice, for scanning arbitrary files, CyberSoft’s UAD tool is used in a pipeline or as a
forked process from the VFind daemon (if turned on via SVSP) to unpack, decode and/or
uncompress archives and other composite files, such as .zip or .tar.gz files or e-mail with
encoded attachments. UAD transfers data, file names, and file types to VFind using
CyberSoft’s SmartScan protocol4 specified by the uad -ssw (SmartScan write) and VFind –ssr
(SmartScan read) command–line options, for example:

% uad -ssw somefiles...| vfind -ssr other_vfind_options...

Note, by default as of release 182 UAD is sub-processed by VFind by default.

For simplicity, the examples here use standalone VFind, without UAD, but for most kinds of
production use of the VSTK ToolKit it is recommended to use both UAD and VFind with
SmartScan.

2.3 Exercises

1. Install VFind on a system, or use an existing installation. Use VFind to scan all files on the
system, or at least all of those files that are readable for to the user. Record the number of
VDLs reported, number of files scanned, real and CPU run–time used, and peak RAM usage.
2. Examine the VFind CyberSoft VDLs, and create an example file which will match one of
the VDLs.

4 CyberSoft, “Smartscan.” http://cybersoft.com/, whitepapers, programming examples.

VSTK Manual 5th Edition 180 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Chapter 3 Basic CVDL

CVDL is the CyberSoft Virus Description Language. It was first defined in January 1992 to
provide flexibility in scanning for viruses and general purpose scanning. Since that time,
CVDL has undergone many enhancements and continues to actively evolve to meet new
scanning needs.

CVDL is used to define patterns for scanning for most of the engines within VFind, i.e. the
vdl, vdlc, vdle, vdlE, vdlm, and jadevdl engines. This chapter introduces just enough basic
CVDL so the reader will be able to understand the examples in the next chapter on VFind
Scan Engines. The rest of CVDL is described in Chapters 6 to 12.

3.1 Pattern Size Limit – No Limit on Input Data, 65537 bytes pattern limit

Before using CVDL to create patterns, it is important to understand how data is scanned by
VFind. First of all, note that there is no limit on the size of the input data being scanned. To
accommodate limitless data, VFind uses an input data sliding scan window of size 1 MB
(1024*1024 = 1048576 bytes), with an overlap of 64 KB (64*1024 = 65536 bytes) between
windows. So after scanning the first MB of input data, the next window of data scanned
consists of the last 64 KB from the first window followed by an additional 983040 bytes
(1048576 – 65536) of new data.

Patterns matching 65537 bytes or less of data will always work, but patterns matching 65538
or more bytes of data may not work if the matching data overlaps a scan window edge.

For example, if 65538 bytes of data are to be matched and the first 65537 of those bytes occur
at the end of one scan window, it will not match in that window since it is missing the last byte
of the data; the next window will start with the last 65537 bytes of the data and will also not
match since it is missing the first byte of the data.

3.2 VDL Format

A VDL is a named set of CVDL patterns. VDLs start with a colon character, followed by the
VDL name, comma, definition, and terminating # character:

: name , definition # ; comment
; comment to end of line after semi-colon

The VDL name can consist of any characters, including spaces, but cannot contain a comma,
since the comma is used to separate the name from the definition. The VDL can extend over
multiple lines, and white space is ignored except in the name and literal strings.

VSTK Manual 5th Edition 181 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

The VDL definition consists of a sequence of patterns and operators which can span multiple
lines. The definition is terminated by the # character. The semicolon (;) character is used to
specify a comment which extends to the end of the line.

The simplest type of patterns are literal strings, e.g. “abc”, and the simplest type of operators
are concatenation and offsets. These are described in the following sections.

3.3 Strings

A CVDL string pattern is a sequence of characters and escape sequences enclosed in “double
quotes”.

An escape sequence is \c or a hex escape sequence. If character c is n, r, or t this represents
new line, carriage–return, or tab, respectively; otherwise, it represents character c itself. A hex
escape sequence is \x or \X followed by two hex digits.

Prefixing a string with a tilde (~) specifies case–insensitive matching, e.g. ~“abc” will match
“abc”, “ABC”, “AbC”, etc. Inside of a string, lines ending with a backslash (“\”) specify
continuation on the next line.

VDL string examples:

:v1, "abc\"efg" # ; matches: abc"efg
:v2, "abc\x22efg" # ; same as v1
:v3, "abc\x22\
efg" # ; same as v1

3.4 Concatenation and Offsets

VDL pattern elements are concatenated into larger patterns by using a comma, for example:
"abc", "def"

is the same as: "abcdef"

In a VDL definition the comma operator means followed by.
An offset range for concatenation can be specified using the @ operator, for example: "abc",
@0-10, "def"

will match ”abc” followed by ”def” at an offset of anywhere from 0 to 10 bytes from the end
of
”abc”. So it will match ”abcdef”, ”abcXdef”, ..., ”abcXXXXXXXXXXdef”, where X
represents any byte.

VSTK Manual 5th Edition 182 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

In the offset range operator start–end, where start or end may be omitted to use the defaults of
0 and 32767. So @–10 is the same as @0–10, and @20000– is the same as @20000–32767.
If only one value is specified with no hyphen, i.e. @val, that is the same as @val–@val,
which is a fixed offset instead of a range.

Note that an offset range only makes sense if preceded by a pattern to offset from. It does not
make sense to specify an offset range at the beginning of a VDL segment because there is
nothing to offset from. The beginning of a VDL is automatically checked at all offsets from
the beginning of the scanned data. The VFind -d, –dup-check option (see Section 2.1), which
checks for duplicate VDL names and definitions, also checks for offsets at the beginning of a
VDL segment, and reports those as parser errors.

Offset ranges are useful for matching data which contains fixed patterns separated by variable
offsets. For example, here are “unsubscribe” sentences from four different spam e-mail
messages:

% cd examples/vdl/spam
% foreach i (1 2 3 4)
? echo s$i
? cat s$i
? end
s1
If you would like to unsubscribe from receiving further s2
You can unsubscribe anytime if you want.
s3
Or, you may unsubscribe via postal mail by printing s4
If you wish to unsubscribe from future mailings
%

If it is decided that detecting the word “you”, case–insensitive, followed closely by
“unsubscribe” may be a good way to match such sentences, it could be using the following
VDL:

VSTK Manual 5th Edition 183 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

% cat s.vdl
:SPAM unsub, ~"you", @-20, "unsubscribe" #
% VFind --liboff=’*’ --vdl=s.vdl s{1,2,3,4} |& grep VIRUS
##==>>>> VIRUS POSSIBLE IN FILE: "s1"
##==>>>> VIRUS ID: CVDL SPAM unsub
##==>>>> VIRUS END OFFSET: 32, matched: to unsubscribe
##==>>>> VIRUS POSSIBLE IN FILE: "s2"
##==>>>> VIRUS ID: CVDL SPAM unsub
##==>>>> VIRUS END OFFSET: 19, matched: can unsubscribe
##==>>>> VIRUS POSSIBLE IN FILE: "s3"
##==>>>> VIRUS ID: CVDL SPAM unsub
##==>>>> VIRUS END OFFSET: 23, matched: may unsubscribe
##==>>>> VIRUS POSSIBLE IN FILE: "s4"
##==>>>> VIRUS ID: CVDL SPAM unsub
##==>>>> VIRUS END OFFSET: 26, matched: to unsubscribe
%

Offset ranges can be used to match executable code fragments irrespective of variable data
values. For example, the disassembly shown in Section 4.3.2 includes the following code:

emu: 00004f23 bf474f mov DI 0x4f47 ; DI=0x0 ; \xbfGO
emu: 00004f26 b86b1b mov AX 0x1b6b ; AX=0x0 ; \xb8k\x1b emu: 00004f29 90 nop ; ; \x90
emu: 00004f2a fc cld ; ; \xfc
emu: 00004f2b b9b504 mov CX 0x4b5 ; CX=0x0 ; \xb9\xb5\x04 emu: 00004f2e 90 nop ; ;
\x90
emu: 00004f2f 2bda sub BX DX ; BX=0xffff DX=0x0 ; +\xda
emu: 00004f31 2bd8 sub BX AX ; BX=0xffff AX=0x1b6b ; +\xd8
emu: 00004f33 33d9 xor BX CX ; BX=0xe494 CX=0x4b5 ; 3\xd9
emu: 00004f35 310d xor DS:[DI] CX ; DS=0x0 DI=0x4f47 CX=0x4b5 ; 1\x0d
emu: 00004f37 3105 xor DS:[DI] AX ; DS=0x0 DI=0x4f47 AX=0x1b6b ; 1\x05
emu: 00004f39 f8 clc ; ; \xf8
emu: 00004f3a 43 inc BX ; BX=0xe021 ; C

This is part of a polymorphic virus decryption engine, and each time the virus replicates, this
engine code is copied with different initial values for the DI and AX registers. If the byte
values from column three of the disassembly is taken:

 bf474fb86b1b90fcb9b504902bda2bd833d9310d3105f843

and create a VDL:

:vpoly,"\xbf\x47\x4f\xb8\x6b\x1b\x90\xfc\xb9\xb5\x04\x90\x2b\
\xda\x2b\xd8\x33\xd9\x31\x0d\x31\x05\xf8\x43"#

VSTK Manual 5th Edition 184 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

That will match this particular sample, but will not match other copies of the virus which use
different initial DI and AX values. But using offsets, the VDL can be modified as follows so
that it will match irrespective of the initial DI and AX values:

:vpoly,"\xbf",@2,\xb8",@2,\x90\xfc\xb9\xb5\x04\x90\x2b\
\xda\x2b\xd8\x33\xd9\x31\x0d\x31\x05\xf8\x43"#

3.5 Entropy and Serial Correlation

To avoid false hits on clean data, VDL patterns should be taken from “data rich” sections of
the samples to be matched. “Data rich” can be defined as patterns which are unlikely to
appear randomly even in compressed data. These are generally patterns which have high
entropy and low serial correlation.

Entropy is a measure of information content, with units of bits-per-byte as used here, so it
ranges from a minimum of 0 to a maximum of 8. Entropy is computed from the probabilities
of occurrence of each possible byte value 0...255:

Where the probabilities pi are estimated using frequency of occurrence of each byte.

It is possible for a highly correlated data sequence to have high entropy, even though the data
is not very randomly distributed. Thus, in conjunction with the entropy calculation, the serial
correlation coefficient should also be checked.

The serial correlation coefficient is a measure of the amount that sequential data is related. A
correlation coefficient always lies between –1 and +1. When it is zero or very small, it
indicates that the data values are (relatively speaking) independent of each other. But when
the correlation coefficient is close to ±1 it indicates linear dependence between data values
(Knuth5 page 70).

5 D.E. Knuth, The Art of Computer Programming, Second Edition, Volume 2, Seminumerical Algorithms. Addison–
Wesley, 1981.

VSTK Manual 5th Edition 185 of 343

(3.1)

VSTK Manual 5th Edition CyberSoft Operating Corporation

For n data samples U0, ..., Un-1the serial correlation coefficient is defined as:

where S1 and S2 are defined as:

The sample entropy and serial correlation coefficient should be computed over a sliding
window through the sample data, and the window with maximum (e - 8|s|) selected to produce
a VDL string pattern. The factor of 8 simply scales the absolute serial correlation coefficient
value to be in the same range as entropy to balance the maximization.

Three simple example files were created for testing entropy and serial correlation calculations:

% cd examples/vdl
% cat mkdata.sh
#! /bin/sh
dd ibs=1 count=100 < /dev/zero > zeros.dat
dd ibs=1 count=100 < /dev/random > random.dat
gzip < /var/log/syslog | dd ibs=1 skip=100 count=100 > gzip.dat
% perl es.pl < zeros.dat e = 0, |s| = 1, e-8|s| = -8
% perl es.pl < random.dat
e = 6.4, |s| = 0.0478, e-8|s| = 6.02
% perl es.pl < gzip.dat
e = 6.22, |s| = 0.176, e-8|s| = 4.81
%

The example file zeros.dat contains all 0 bytes, so it has very low entropy and high correlation
(the es.pl Perl script used to compute e, |s|, and (e - 8|s|) is shown below). In contrast, the
random data has very high entropy and low correlation, and the gzip/compressed data has high
entropy but more correlation than the random data.

Now suppose a VDL pattern to match the file sleep.exe from the examples/vdlE/ directory
needs to be created. Evaluating the entropy and correlation over a window of 100 bytes at a
few different file offsets yields:

VSTK Manual 5th Edition 186 of 343

(3.2)

VSTK Manual 5th Edition CyberSoft Operating Corporation

% sh
$ for i in 0 1000 2000 10000
> do
> x=‘dd if=../vdlE/sleep.exe ibs=1 skip=$i count=100 2>/dev/null | perl es.pl‘
> echo "offset=$i $x"
> done
offset=0 e = 4.96, |s| = 0.064, e-8|s| = 4.45 offset=1000 e = 5.16, |s| = 0.233, e-8|s| = 3.3
offset=2000 e = 4.43, |s| = 0.139, e-8|s| = 3.32 offset=10000 e = 5.09, |s| = 0.172, e-8|s| = 3.72
$

Figure 3.3: Serial Correlation and Entropy vs. File Offset – 100 byte sliding window

So it may now be decided to use the offset=0 data, since that had the largest (e - 8|s|) value;
however, a more detailed analysis, illustrated in Figure 3.3, would consider all possible file
offsets. The left side of the figure plots the serial correlation and entropy using a window of
100 bytes sliding over the whole file. The right side is zoomed in starting at file offset 11000.
Further analysis reveals that the maximum value of (e - 8|s|) occurs at file offset 11506, where
the values are:

% dd if=../vdlE/sleep.exe ibs=1 skip=11506 count=100 | perl es.pl e = 5.86, |s| = 0.0166, e-8|s|
= 5.73

That file data can be extracted in hex:

VSTK Manual 5th Edition 187 of 343

(3.3)

VSTK Manual 5th Edition CyberSoft Operating Corporation

% dd if=../vdlE/sleep.exe ibs=1 skip=11506 count=100 | od -tx1
0000000 c0 bf ff ff 2d 00 10 73 0a f7 d8 b1 04 d3 e0 2b
0000020 f8 33 c0 8e c0 fd 8a 5c fd 8a 3c 8b 6c fe 8a d7
0000040 8a c3 8b cd 83 ee 03 8b de f6 c2 01 75 03 2b d9
0000060 43 4b 8b 6f fe 8a 67 fd 8a 3f 86 dc f6 c2 01 74
0000100 07 4e e3 06 f3 aa eb 02 f3 a4 84 d2 78 38 b1 04
0000120 8b c7 f7 d0 d3 e8 81 cf f0 ff 8c c2 2b d0 73 08
0000140 f7 da d3 e2

and create the corresponding VDL pattern:

:sleep.exe, "\xc0\xbf\xff\xff\x2d\x00\x10\x73\x0a\xf7\xd8\xb1\x04\xd3\xe0\x2b\xf8\x33\
\xc0\x8e\xc0\xfd\x8a\x5c\xfd\x8a\x3c\x8b\x6c\xfe\x8a\xd7\x8a\xc3\x8b\xcd\
\x83\xee\x03\x8b\xde\xf6\xc2\x01\x75\x03\x2b\xd9\x43\x4b\x8b\x6f\xfe\x8a\
\x67\xfd\x8a\x3f\x86\xdc\xf6\xc2\x01\x74\x07\x4e\xe3\x06\xf3\xaa\xeb\x02\
\xf3\xa4\x84\xd2\x78\x38\xb1\x04\x8b\xc7\xf7\xd0\xd3\xe8\x81\xcf\xf0\xff\
\x8c\xc2\x2b\xd0\x73\x08\xf7\xda\xd3\xe2"#

Following is the perl script used to compute entropy and serial correlation:

% cat es.pl
undef $/; @b = split("",<STDIN>); $len = 1+$#b;
compute entropy $e
for($i = 0; $i < 256; ++$i) { $x[$i] = 0; }
for($i = 0; $i < $len; ++$i) { $c = ord($b[$i]); ++$x[$c]; }
$e = 0; $l2 = log(2);
for($i = 0; $i < 256; ++$i) { if($x[$i] > 0) {
$p = $x[$i]/$len; $e += $p * log(1/$p)/$l2; } }

compute serial correlation coefficient $s
$d = ord($b[0]);
$s1 = ord($b[$len-1]); $s2 = $s1*$s1; $s12 = $s1*$d;
for($i = 1; $i < $len; ++$i) { $c = $d; $d = ord($b[$i]);
$s1 += $c; $s2 += $c*$c; $s12 += $c*$d; }
$s1 *= $s1; $d = $len * $s2 - $s1;
if($d == 0.0) { $s = 1.0; } else { $s = ($len * $s12 - $s1)/$d; }
printf "e = %.3g, |s| = %.3g, e-8|s| = %.3g\n", $e, abs($s), $e-8*abs($s);

3.6 Exercises

1. Write a program to compute e, |s|, and (e-8|s|) over an entire file using a sliding window of
adjustable size, find the file offset to maximize (e-8|s|), and output the corresponding VDL.
2. Create a VDL to match some executable file on the system, then check all executable files
for false hits.

VSTK Manual 5th Edition 188 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Chapter 4 VFind Scan Engines

VFind scans data using several different engines which implement pattern matching
techniques appropriate for different kinds of data. This chapter describes each engine in detail
with examples, except for the cbayes engine which is described separately in Chapter 5. It is
important to understand the VFind engines because VDLs and other patterns that may want to
be matched must be designed for use with a specific engine. Pattern analysis engine design is
a constantly evolving and ongoing process that needs to react not only to projected needs, but
also to real world events. For this reason, this section of the manual is subject to change
without notice.

The engines are:

vdl - The most general and basic scan engine. This engine can be used to scan any kind of
data.

vdlc - A case–insensitive scan engine which should be used only for scanning text.

vdlm - A meta engine which detects patterns in the results of the other engines rather than in
the data.

jadevdl - A Java disassembler engine which scans the results of Java class file disassembles
rather than the original data.

md5/cit - An MD5–hash–based engine for efficient whole–file matches using hash databases.

cbayes - A scan engine based on Bayesian probability classification.

The engines are configured with pattern files specified in VSTK HOME/data/VFind/vdl.list
which contains entries specifying pattern file name, engine, enable/disable, and description.
Except for CIT engine pattern files, which reside in the VSTK HOME/data/cit/ directory, all
of the pattern files reside in the VSTK HOME/data/VFind/ directory.

VSTK Manual 5th Edition 189 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Table: Example vdl.list file:

Each engine also has a command–line option to specify additional user–defined pattern files.

–vdl=file Read additional virus descriptions from the specified file.

–vdlc=file Read additional case insensitive virus descriptions from the specified file.

–vdlm=file Read additional meta virus descriptions from the specified file.

–jadevdl=file Load additional virus signatures from file. File contains VDL models for
hostile java applets and applications.

–md5=file Read additional MD5 signatures from the specified file.

–cbayes=file Read additional cbayes data from the specified file.

4.1 VDL Engine

For general purpose scanning for binary patterns in arbitrary file types, the vdl engine should
be used. Some attention should be given to constructing patterns in parts or using hex notation
to avoid false hits on the pattern file itself.

For example, if the pattern to be detected is “abcdefg”, VDL ag1 could be created in file
ag.vdl:
:ag1, "abcdefg" # however, VFind would report a match when scanning the ag.vdl file itself.
To avoid such matches, the pattern could be either split into two parts as in VDL ag2, or write
part of it in hex or decimal as in ag3, and ag4 :

VSTK Manual 5th Edition 190 of 343

File Engine

ctext vdlc disable Case--insensitive Text
dpoly vdle disable Decrypted Polymorphs

meta vdlm enable Meta VDLs
notell vdl enable notell VDLs

Enabled/
Disabled

Comment/
Description

exe
ole

vdl
vdl

enable
enable

MicroSoft Executable
MicroSoft OLE

Entry
jade

vdlE
jadevdl

disable
enable

Entry--Point Scalpel
Java Classes

danger
spam

cit
cbayes

enable
enable

CIT Danger Files
SPAM

VSTK Manual 5th Edition CyberSoft Operating Corporation

% cd examples/vdl
% cat x.txt abc
abcd

ZZabcdefghij
% cat ag.vdl
:ag2, "abc", "defg" #
:ag3, "abc\x64efg" #
:ag4, "abc", 100, "efg" #
% VFind --liboff=’*’ --vdl=ag.vdl x.txt ag.vdl |& egrep ’Checking file|VIRUS’
##==> Checking file: "x.txt"
##==>>>> VIRUS POSSIBLE IN FILE: "x.txt"
##==>>>> VIRUS ID: CVDL ag4
##==>>>> VIRUS END OFFSET: 23, matched: \x0a----\x0aZZabcdefg
##==>>>> VIRUS POSSIBLE IN FILE: "x.txt"
##==>>>> VIRUS ID: CVDL ag3
##==>>>> VIRUS END OFFSET: 23, matched: \x0a----\x0aZZabcdefg
##==>>>> VIRUS POSSIBLE IN FILE: "x.txt"
##==>>>> VIRUS ID: CVDL ag2
##==>>>> VIRUS END OFFSET: 23, matched: \x0a----\x0aZZabcdefg
##==> Checking file: "ag.vdl"

Another example is the pattern provided by EICAR6 for use in testing anti-virus scanners:

X5O!P%@AP[4\PZX54(P^)7CC)7}
$EICAR-STANDARD-anti-virus-TEST-FILE!$H+H*

The pattern should be specified all on one line with no blanks or new line characters, but it is
split over two lines above to avoid detection if this report is scanned. The EICAR printable
string is actually a legitimate MS/DOS.COM program, and when run it prints the message:
EICAR STANDARD-anti-virus-TEST-FILE!

Detection of the EICAR test pattern includes additional constraints which will be considered
later in Section 6.7. Here is a shell script to create a VDL which will match the pattern
anywhere in a file:

6 European Institute for Computer anti-virus Research. http://www.eicar.com/.

VSTK Manual 5th Edition 191 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

% cat eicar.sh
#! /bin/sh
create eicar hex vdl from eicar.com
echo ’:EICAR,"\c’
perl -e ’undef $/; foreach $b (split("",<STDIN>)){ printf("\\x%02x",ord($b));}’
echo ’"#’
% ./eicar.sh < eicar.com > eicar.vdl
% fold eicar.vdl
:EICAR,"\x58\x35\x4f\x21\x50\x25\x40\x41\x50\x5b\x34\x5c\x50\x5a\x58\x35\x34\x28
\x50\x5e\x29\x37\x43\x43\x29\x37\x7d\x24\x45\x49\x43\x41\x52\x2d\x53\x54\x41\x4e
\x44\x41\x52\x44\x2d\x41\x4e\x54\x49\x56\x49\x52\x55\x53\x2d\x54\x45\x53\x54\x2d
\x46\x49\x4c\x45\x21\x24\x48\x2b\x48\x2a"#

% VFind --liboff=’*’ --vdl=eicar.vdl eicar.com |& grep VIRUS
##==>>>> VIRUS POSSIBLE IN FILE: "eicar.com"
##==>>>> VIRUS ID: CVDL EICAR
##==>>>> VIRUS END OFFSET: 68, matched: TEST-FILE!$H+H*
%

For a pure binary example, suppose the user has used an analysis of entropy and/or serial
correlation (see Section 3.5) or other means to identify that offset lines 9 and 10 of an octal
dump of the file binary.dat would produce a good VDL. A VDL can be created semi–
automatically using a small shell script:

% cat binary.sh
#! /bin/sh
create vdl from octal dump input echo ’:vbin,"\c’
cut -c8- | sed ’s/ /\\x/g’ | tr -d ’\n’
echo ’"#’
% od -tx1 binary.dat | head -10 | tail -2
0000200 3c 7e 81 8d c2 8a bb 3e de ae 97 fd 6f a5 3c 20
0000220 c0 58 c7 35 22 c5 19 f4 6c 60 91 b2 77 44 6c a2

% od -tx1 binary.dat | head -10 | tail -2 | ./binary.sh > binary.vdl

% fold binary.vdl

:vbin,"\x3c\x7e\x81\x8d\xc2\x8a\xbb\x3e\xde\xae\x97\xfd\x6f\xa5\x3c\x20\xc0\x58\
xc7\x35\x22\xc5\x19\xf4\x6c\x60\x91\xb2\x77\x44\x6c\xa2"#

VSTK Manual 5th Edition 192 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

% VFind --liboff=’*’ --vdl=binary.vdl binary.dat |& grep VIRUS
##==>>>> VIRUS POSSIBLE IN FILE: "binary.dat"
##==>>>> VIRUS ID: CVDL vbin
##==>>>> VIRUS END OFFSET: 160, matched: X\xc75"\xc5\x19\xf4l‘\x91\xb2wDl\xa2
%

4.2 vdlc Engine

As will be discussed in Section 13.2, VFind uses a parallel search engine design, so scanning
runtime is mostly independent of the number of VDL rules. However, the general vdl parallel
search engine does not handle case–insensitive (Section 3.3) or wildcard white space (Section
7.5) patterns, so VDLs containing such patterns generally run slow. The vdlc engine was
created specifically to provide fast/parallel run–time for these patterns.

Note that use of the vdlc engine only affects the scanning speed and does not affect the
accuracy of pattern detection. VDL patterns are always checked completely and serially if
triggered by a parallel search engine, to avoid false detections. This means, for example, the
following VDL:

:mixy, "Hello" and ~"goodbye" #

will only match text which contains “Hello” (case–sensitive), and “goodbye” (case–
insensitive, so “GoodBye” and “GOODbYe” also match) regardless of whether the vdl or vdlc
engine is used, as can be seen in the sample run below: file t2.txt is matched but t1.txt is not;
however, scanning will be faster for this VDL if used with the vdlc engine.

% cd examples/vdlc
% cat mixy.vdl
:mixy, "Hello" and ~"goodbye" #
% cat t1.txt
abc heLLO GoodBYE
% cat t2.txt
abc Hello GoodBYE
% VFind --liboff=’*’ --vdl=mixy.vdl t1.txt t2.txt |& grep VIRUS
##==>>>> VIRUS POSSIBLE IN FILE: "t2.txt"
##==>>>> VIRUS ID: CVDL mixy
##==>>>> VIRUS END OFFSET: 17, matched: c Hello GoodBYE
% VFind --liboff=’*’ --vdlc=mixy.vdl t1.txt t2.txt |& grep VIRUS
##==>>>> VIRUS POSSIBLE IN FILE: "t2.txt"
##==>>>> VIRUS ID: CVDL mixy
##==>>>> VIRUS END OFFSET: 17, matched: c Hello GoodBYE
%

VSTK Manual 5th Edition 193 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

4.3 vdlm Engine

The vdlm (m for meta) engine detects patterns in the results of the other engines rather than in
the data. For each input file scanned, all “VIRUS ID” results are saved in a temporary buffer.
When the end of the input file is reached, and all other engines are finished scanning the file,
then the vdlm engine scans the buffer of results.

Take the first example from Section 4.1; based on the hits reported, the temporary buffer
scanned by the vdlm engine would contain the following three lines:

CVDL ag4
CVDL ag3
CVDL ag2

Using the high–level CVDL “AND” operator from Chapter 8, a meta vdl could be written to
match if both “ag2” and “ag3” are found:

% cd examples/vdlm
:ag2+ag3, "CVDL ag2" AND "CVDL ag3" #
% cat ag23.vdl
:ag2+ag3, "CVDL ag2" AND "CVDL ag3" #
% VFind --liboff=’*’ --vdl=../vdl/ag.vdl --vdlm=ag23.vdl ../vdl/x.txt |& grep VIRUS
...
##==>>>> VIRUS ID: CVDL ag2+ag3
##==>>>> VIRUS END OFFSET: 17, matched: DL ag4\x0aCVDL ag3
%

In conjunction with notell VDLs described in Section 11.4, meta VDLs can be useful for
detection with UAD/SmartScan input that decomposes archives into separate components.
Since each component is scanned separately, it is not possible to create a regular VDL which
would match across components.
However, notell VDLs can be created to match individual components, and then a meta VDL
can be written to match on the notell hits. For more information and examples see Chapter 11
and Section 11.5 in particular.

4.4 jadevdl Engine

The jadevdl engine is a Java disassembler which scans the results of Java class file
disassemblies rather than the original data. The engine is based on the VSTK JDIS tool,
which can be used for analysis of class files to design VDLs.

VSTK Manual 5th Edition 194 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Note that Java disassembly does not produce Java source code, it produces the instructions
that comprise the Java byte codes, for each of the methods in a class. These are documented
in the Java Virtual Machine Specification7. The following example shows a Java applet which
may be hostile since it attempts to read a local file (SYSTEM.DAT):

% cd examples/jadevdl
% cat applet.java import java.io.*; import java.applet.*;
public class applet extends Applet {

public void start() {
try { BufferedReader fin = new BufferedReader(

new InputStreamReader(new FileInputStream("SYSTEM.DAT")));
String line;

while((line = fin.readLine()) != null) {
// ...process line ...

}
fin.close();
} catch(Exception e) { }

}
}
%

Using jdis on the applet class file, the user can analyze the disassembly:

% jdis -f applet.class

public class applet extends java.applet.Applet

Method public void <init>()
0 aload_0
1 invokespecial #8 <Method: (void) java.applet.Applet.<init>()>
4 return

Method public void start()
0 new #4 <Class: java.io.BufferedReader>
3 dup
4 new #6 <Class: java.io.InputStreamReader>
7 dup
8 new #5 <Class: java.io.FileInputStream>
11 dup
12 ldc #1 <String: "SYSTEM.DAT">
14 invokespecial #11 <Method: (void)

7 Java. http://java.sun.com/.

VSTK Manual 5th Edition 195 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

java.io.FileInputStream.<init>(java.lang.String)>
17 invokespecial #9 <Method: (void)
java.io.InputStreamReader.<init>(java.io.InputStream)>
20 invokespecial #10 <Method: (void) java.io.BufferedReader.<init>(java.io.Reader)>
23 astore_1
24 goto 27
27 aload_1
28 invokevirtual #13 <Method: (java.lang.String) java.io.BufferedReader.readLine()>
31 dup
32 astore_2
33 ifnonnull 27
36 aload_1
37 invokevirtual #12 <Method: (void) java.io.BufferedReader.close()>
40 goto 44
43 pop
44 return
}

Based on the above, a VDL is created to match ”SYSTEM.DAT” followed within 80 bytes by
”FileInputStream”. Note below that using the VDL in the general CDL scan engine it does
not match, however using it in the jadevdl engine it does match the class file:

% cat system.vdl
:system, "\"SYSTEM.DAT\"", @-80, "FileInputStream" #
% VFind --liboff=’*’ --vdl=system.vdl applet.java applet.class |& grep VIRUS
% VFind --liboff=’*’ --jadevdl=system.vdl applet.java applet.class |& grep VIRUS
##==>>>> VIRUS POSSIBLE IN FILE: "applet.class"
##==>>>> VIRUS ID: CVDL system
##==>>>> VIRUS END OFFSET: 468, matched: FileInputStream
%

4.5 MD5/CIT Engine

The md5 engine is an MD5–hash–based8 engine for efficient whole–file matches using hash
databases. The engine is related to the VSTK CIT program (Cryptographic Integrity Tool),
which can be used to create MD5 databases. The “dangerfile” distributed with cit is an
example of an md5 database. In general, for use with the md5 engine, a database should
contain one line per hash consisting of 32 hex digits (the file hash or “signature”) followed by
a blank or tab, followed by the file name. Empty lines and lines starting with # are ignored,
and any trailing blanks, tabs, carriage-returns, and new lines are ignored. The following
example shows a script used to create an md5 database from a set of files using either CIT or
OpenSSL9:

8 RFC 1321 - The MD5 Message-Digest Algorithm. ftp://ftp.rfc-editor.org/in- notes/rfc1321.txt.
9 OpenSSL Project. http://www.openssl.org/.

VSTK Manual 5th Edition 196 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

% cd examples/md5
% cat mkdb.sh
#! /bin/sh
read file names from stdin and create md5 db while read pathname
do

use cit or openssl
h=‘cit "$pathname"‘
#h=‘openssl md5 "$pathname" | awk ’{ print $2 }’‘
fname=‘basename "$pathname"‘
echo "$h $fname"

done

% find ../cbayes/z -name ’*.txt’ -print | ./mkdb.sh > z.db
% cat z.db dab3b1bc468c2a147f705a016b88842f z1.txt
373cee1606a140f8a436e0dbb0d7698e z2.txt
e0dccb5ed73f5e1f1373f7c752109eee z3.txt
07bf0b1b489b6086469cce20a60ae9ca z4.txt
4b6daf7ef35a5a704aa389e5c89e43cb z5.txt
5725d4a05911e0fb73a617503d368c4e z6.txt
39e8b6d60503540c9414e9d687a3038f z7.txt
dd9c712d9be1623e001823d6cd2ed35b z8.txt
62b8650e7f7eac92e53217c3b6b4e6e6 z9.txt

Now use VFind to scan a collection of files, and verify the hits:

% find ../cbayes -type f -print | VFind --liboff=’*’ --md5=z.db |& grep VIRUS
##==>>>> VIRUS POSSIBLE IN FILE: "../cbayes/z/z1.txt"
##==>>>> VIRUS ID: MD5 z1.txt
##==>>>> VIRUS POSSIBLE IN FILE: "../cbayes/z/z2.txt"
##==>>>> VIRUS ID: MD5 z2.txt
##==>>>> VIRUS POSSIBLE IN FILE: "../cbayes/z/z3.txt"
##==>>>> VIRUS ID: MD5 z3.txt
##==>>>> VIRUS POSSIBLE IN FILE: "../cbayes/z/z4.txt"
##==>>>> VIRUS ID: MD5 z4.txt
##==>>>> VIRUS POSSIBLE IN FILE: "../cbayes/z/z5.txt"
##==>>>> VIRUS ID: MD5 z5.txt
##==>>>> VIRUS POSSIBLE IN FILE: "../cbayes/z/z6.txt"
##==>>>> VIRUS ID: MD5 z6.txt
##==>>>> VIRUS POSSIBLE IN FILE: "../cbayes/z/z7.txt"
##==>>>> VIRUS ID: MD5 z7.txt
##==>>>> VIRUS POSSIBLE IN FILE: "../cbayes/z/z8.txt"
##==>>>> VIRUS ID: MD5 z8.txt
##==>>>> VIRUS POSSIBLE IN FILE: "../cbayes/z/z9.txt"
##==>>>> VIRUS ID: MD5 z9.txt

VSTK Manual 5th Edition 197 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

4.5.1 Hash Theory and Collisions

Cryptographic hash functions like MD5 are designed to take an arbitrary amount of input m
and produce a fixed–length number (128 bits for MD5) H using a one–way transformation, H
= h(m). One–way means that the inverse function h-1(H) does not exist, and it is not possible
to reproduce the original input m from the hash. A good hash function should produce
random looking results, uncorrelated for similar inputs. If it is likely that different inputs may
produce the same hash value, i.e. a collision, that would lead to false hits in scanning.

An important property of a good hash function, for use with signature–based scanning, is that
it should be very unlikely to find an input m2 which hashes to a given h(m1). Let n represent
the number of bits in a hash, with N = 2n the total number of possible hash values. Given a
random input m2, the probability that it produces the same hash as m1 is 1/N, i.e. 2-128 for
MD5, which is extremely unlikely.

It can also be considered how many random inputs must be examined in order for the
probability of a collision with a specific hash to reach 1/2. For k inputs there is
approximately 1/2 = k(1/N), and solving for k yields:

k = N/2 . (4.1)

For MD5, that is 2127 inputs, a very large number. For a more rigorous derivation of this
and other results, see Stallings10 page 341.

But in the overall scheme of things, input files are being examined and a decision is being
made for one reason or another that some are “bad”, so that MD5 signatures may be created
for those, and some files are “good”, so it is hoped that those do not have a collision with any
of existing signatures. It is in this broader context that perhaps the most important property of
a good hash function arises, that is: it is unlikely to find two different inputs which produce
the same hash value.

10 W. Stallings, Cryptography and Network Security, Principles and Practice, Third Edition. Prentice Hall, 2003.

VSTK Manual 5th Edition 198 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Using an argument from Kaufman, et.al.11 page 103, with k inputs, there are k(k - 1)/2
distinct pairs of inputs. For each pair, there is a probability of 1/N of a collision, so to
reach a probability of 1/2 there is approximately 1/2 = (k(k - 1)/2)(1/N), and solving for k
yields:

k = √N . (4.2)

For MD5, that is 264 inputs, a fairly large number, considering that the odds of winning the top
prize in a lottery and being killed by lightning in the same day are about 1 in 255 (see
Schneier12 page 18).

4.6 Exercises

1. Why is (4.1) only approximate? Perform a more rigorous derivation. Hint: solve for P(no
collisions) = 1/2.
2. Why is (4.2) only approximate (besides treating (k - 1) as k)? Perform a more rigorous
derivation.

11 C. Kaufman, R. Perlman, and M. Speciner, Network Security, Private Communication in a
Public World. Prentice Hall, 1995.
12 B. Schneier, Applied Cryptography, Second Edition. Wiley, 1996

VSTK Manual 5th Edition 199 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Chapter 5 Bayes Scan Engine

The VFind cbayes (CyberSoft Bayes) scan engine uses probabilistic techniques to classify
data as being in one of two opposite groups. For each set of opposite groups to be detected,
the classification uses a database created from samples of both groups.

The groups are generically referred to as “bad” and “good”, but the actual classification
reported is based on the cbayes database file name, e.g. a hit using a database named spam.dat
would be reported as:

##==>>>> VIRUS ID: CBAYES spam 1.000000000

5.1 Bayesian Classification Theory

Given some input data, the problem is to decide if the data should be classified as bad or good.
The decision is based on a probability P computed using Bayes rule:

P = P(bad|data) = P(data|bad)P(bad)/P(data) .

The apriori P(bad) may be set to 0.5 if it is unknown. P(data) is basically just a scale factor
which will cancel out when the ratio P/(1 – P) is computed below.

The data is decomposed into a set of n tokens, which for text data may be words, groups of
words, or other features.
data = {t1, t2, ..., tn} .

Then there is:

P(data|bad)=P(t1, t2, ..., tn|bad)

≈P(t1|bad)P(t2|bad) · · · P(tn|bad) ,

where the approximation assumes that the tokens are independent; this is called naive
Bayesian Classification. For text data, using tokens derived from consecutive groups of words
helps to make the approximation better. Now consider P(good|data), using Bayes rule:

1 - P = P(good|data) = P(data|good)P(good)/P(data) ,

and P(data|good) may be approximated as:
P(data|good) ≈ P(t1|good)P(t2|good) · · · P(tn|good) .

VSTK Manual 5th Edition 200 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

By computing the ratio P/(1 - P) the the P(data) scale factor can be eliminated:

5.1.1 Token Probabilities

For each token ti, i = 1, ..., n, the probabilities P(ti|bad) and P(ti|good) are estimated
from counts of occurrences of ti in bad and good training data:

bi = count(ti, bad)/count(bad)(5.8)
gi = count(ti, good)/count(good) ,(5.9)

where count(bad) is the number of bad data sets in the training data, and count(ti, bad) is
the number of occurrences of ti in the bad training data. The count ratios can turn out larger
than 1, but will be normalized below. bi and/or gi may be 0, so to avoid multiplying or
dividing by zero the ratio ri is computed:

ri = 1/2, if bi = gi(5.10)
= bi/(bi + gi), if bi ≠ gi ,

and define:

pi = max(Pmin, min(Pmax, ri))
qi = 1- pi

5.2 Text Tokenization and Hashing

Bayesian classification may be performed on any type of data, but this section will concentrate
on text data and the tokenization and hashing utilities currently available in the CyberSoft
CBayes toolkit. Operation of these utilities is described below: chash, chash–merge, chash–
combine, chash2–merge, cbayes.

The CBayes utilities were designed to facilitate an adaptive sliding window approach to Bayes
training and scanning. For detecting e-mail spam for example, collections of spam and clean
hash files may be archived on a daily basis using chash. Then a window of some number of
past days spam and clean archives would be merged into cumulative hash files using chash–
merge. The cumulative spam and clean hash files would then be combined into one file using
chash–combine. Combined hash files may themselves be merged with other combined files,
e.g. from archives on multiple e-mail servers, using chash2–merge. The combined hash file is
then converted by cbayes into a scan database for use with VFind.

VSTK Manual 5th Edition 201 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

To create a CBayes scan database, start with a set of bad and good sample training files, and
split each file into words (i.e. tokens). The set of delimiters separating tokens used by
emphCHash are defined by this C string:

" \t\r\n\f\v\"#()*+,/:;<=>?@[\\]^‘{|}~"

The tokens are then hashed to produce fixed–size (i.e. 64–bit) data. Tokens are hashed
individually as well as optionally in groups of sequential tokens. Token group level 3 is
recommended and is the default for chash. Level 3 means that all individual words, as well as
word pairs (pairs of sequential words), and word triplets (groups of three sequential words)
will be tokenized and hashed. The hashed data is then stored in bad and good database files
together with the counts of frequency of occurrence. The format of these individual bad and
good hash files is called CHASH1. Sets of bad or good CHASH1 data may be merged into
one file using chash–merge.

chash–combine is then used to combine one bad and one good CHASH1 file into a CHASH2
file representing all of the hashes and counts. chash2–merge can then be used to merge
multiple CHASH2 filesif desired. Finally, the log differences log(pi) - log(qi) are pre-
computed from the CHASH2 data and stored as a CBAYES1 database using cbayes.

During scanning, tokens and groups of tokens from the data being scanned are hashed and
looked up in the cbayes database to obtain log(pi)- log(qi) which are accumulated to produce
the overall probability.

5.3 Examples

z/*.txt are the “bad” files, containing data that will be used for Bayes training and eventually
try
to detect in new files.e/*.txt are the “good” training files, containing data opposite in some
sense to the data in the “bad” files.

In these examples, the “bad” z/*.txt filesare actually just encyclopedic entries about zebras,
and the “good” e/*.txt filesare entries about elephants.

% cd examples/cbayes
% ls -R
.:
dat e other z
./e:
e1.txt e2.txt e3.txt e4.txt e5.txt e6.txt e7.txt
./z:
z1.txt z2.txt z3.txt z4.txt z5.txt z6.txt z7.txt z8.txt z9.txt
examine some of the z/ files
#

VSTK Manual 5th Edition 202 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

% foreach i (1 2 3)
? echo z$i.txt
? head -1 z/z$i.txt
? end z1.txt Zebras are members of the horse family native to central and southern z2.txt The
Plains Zebra (Equus quagga, formerly Equus burchelli) is the most z3.txt The Mountain Zebra
(Equus zebra) of southwest Africa tends to have a sleek
examine some of the e/ files
#
% foreach i (1 2 3 4)
? echo e$i.txt
? head -1 e/e$i.txt
? end
e1.txt Elephantidae (the elephants) is the only extant family in the order e2.txt An elephant’s
most obvious characteristic is the trunk, a much elongated e3.txt Elephants have three
premolars and three molars in each quadrant. They erupt e4.txt Skin diseases often occur,
from which they try to protect themselves by
create separate hash file for each z/ input text file
#
% foreach i (1 2 3 4 5 6 7 8 9)
? chash z/z$i.txt > dat/z$i.dat
? end
note CHASH1 format
#
% head -6 dat/z1.dat
CHASH1 n 293 nfiles 1
DATA
00311bc8cf7920ed 1
0035dc18f0bbd4d7 1
alternatively, create one hash file from all z/ input files
#
% chash z/z*.txt > dat/z-all.dat
#
note CHASH1 format
#
% head -6 dat/z-all.dat
CHASH1 n 2219 nfiles 9
DATA
000fcfcc3008220c 1
0011ca19bf83690c 2
check: chash-merge result is equivalent
#
% chash-merge dat/z?.dat | diff - dat/z-all.dat

create separate hash file for each e/ input text file
#

VSTK Manual 5th Edition 203 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

% foreach i (1 2 3 4 5 6 7)
? chash e/e$i.txt > dat/e$i.dat
? end
create merged hash file
#
% chash-merge dat/e?.dat > dat/e-all.dat
note CHASH1 format
#
% head -6 dat/e-all.dat
CHASH1 n 2091 nfiles 7
DATA
0007bbfb33ad6b5a 2
0008267ef6acabe5 1

combine z and e hash files into a CHASH2 database
#
% chash-combine dat/z-all.dat dat/e-all.dat > dat/ze-all.dat
note CHASH2 format
#
% head -7 dat/ze-all.dat
CHASH2
n 4172 badfiles 9 goodfiles 7
DATA
0007bbfb33ad6b5a 0 2
0008267ef6acabe5 0 1
create Bayes database for use in scanning
#
% cbayes dat/ze-all.dat > dat/ze-cbayes1.dat
note CBAYES1 format
#
% head -14 dat/ze-cbayes1.dat
CBAYES1 n 4163 badfiles 9 goodfiles 7 group 3 notell 0
Ethresh 0
Hthresh 1
Pbad 0.5
Pdetect 0.99
Pmin 0.01
DATA
0007bbfb33ad6b5a -4.5951199e+00
0008267ef6acabe5 -4.5951199e+00

check: chash2-merge can merge CHASH2 databases
#
first create two partial CHASH2 databases
#

VSTK Manual 5th Edition 204 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

% mkdir tmp
% chash-merge dat/z{1,2,3,4,5}.dat > tmp/z1-5.dat
% chash-merge dat/z{6,7,8,9}.dat > tmp/z6-9.dat
% chash-merge dat/e{1,2,3,4}.dat > tmp/e1-4.dat
% chash-merge dat/e{5,6,7}.dat > tmp/e5-7.dat
% chash-combine tmp/z1-5.dat tmp/e1-4.dat > tmp/ze1.dat
% chash-combine tmp/z6-9.dat tmp/e5-7.dat > tmp/ze2.dat
now merge and compare with dat/ze-all.dat#
% chash2-merge tmp/ze1.dat tmp/ze2.dat | diff - dat/ze-all.dat
% rm -r tmp

use VFind and ze-cbayes1.dat, scan original training files
#
% VFind --liboff=’*’ --cbayes=dat/ze-cbayes1.dat z/*.txt e/*.txt |& grep VIRUS
##==>>>> VIRUS POSSIBLE IN FILE: "z/z1.txt"
##==>>>> VIRUS ID: CBAYES ze-cbayes1 1.000000000
##==>>>> VIRUS POSSIBLE IN FILE: "z/z2.txt"
##==>>>> VIRUS ID: CBAYES ze-cbayes1 1.000000000
##==>>>> VIRUS POSSIBLE IN FILE: "z/z3.txt"
##==>>>> VIRUS ID: CBAYES ze-cbayes1 1.000000000
##==>>>> VIRUS POSSIBLE IN FILE: "z/z4.txt"
##==>>>> VIRUS ID: CBAYES ze-cbayes1 1.000000000
##==>>>> VIRUS POSSIBLE IN FILE: "z/z5.txt"
##==>>>> VIRUS ID: CBAYES ze-cbayes1 1.000000000
##==>>>> VIRUS POSSIBLE IN FILE: "z/z6.txt"
##==>>>> VIRUS ID: CBAYES ze-cbayes1 1.000000000
##==>>>> VIRUS POSSIBLE IN FILE: "z/z7.txt"
##==>>>> VIRUS ID: CBAYES ze-cbayes1 1.000000000
##==>>>> VIRUS POSSIBLE IN FILE: "z/z8.txt"
##==>>>> VIRUS ID: CBAYES ze-cbayes1 1.000000000
##==>>>> VIRUS POSSIBLE IN FILE: "z/z9.txt"
##==>>>> VIRUS ID: CBAYES ze-cbayes1 1.000000000
%
create some new samples, s1 with text similar to zebras
s2 with text about elephants
#
% fortune -i -m horse > other/s1.txt
% fortune -i -m elephant > other/s2.txt
scan: note s1.txt is detected
#
% VFind --liboff=’*’ --cbayes=dat/ze-cbayes1.dat other/* |& grep VIRUS
##==>>>> VIRUS POSSIBLE IN FILE: "other/s1.txt"
##==>>>> VIRUS ID: CBAYES ze-cbayes1 1.000000000
%

VSTK Manual 5th Edition 205 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

5.4 Exercises

1. Assume that the first lines from the three z/ and four e/ files shown in Section 5.3 are Bayes
training data. Using Pmin = 0.01 and Pmax = 0.99, calculate pi for each of the following four
single word tokens: Zebra, the, most, is. Using P(bad) = 0.5, calculate the overall probability
that data containing those four words is bad.
2. For each of the dat/z?.dat and dat/e?.dat files, create a Bayes database which does not
include that file, then use it to scan the associated omitted text file to determine if it is similar
to the others. For example, use a Bayes database built from dat/z1–8.dat and dat/e1–7.dat to
scan z/z9.txt. There are 16 text files, so 16 separate Bayes databases and scan tests must be
performed. Hint: write a shell script to automate the testing.
3. Select some spam and clean e-mail samples to create a Bayes database. Test the database
on the original samples and on new mail. Hint: uad -M is useful for extracting components
from e-mail.

VSTK Manual 5th Edition 206 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Chapter 6 Low–Level CVDL

This chapter covers the CVDL operators used at the lowest level of scanning, i.e. at the byte
level of data, and sequences of bytes.

6.1 Low–level Or '|'

The low–level or operator ‘|’ specifies the occurrence of alternative patterns at a position
relative to the preceding pattern in the scanned data. For example:

"x", ("a" | "b"), "y"

matches ”x”, followed by ”a” or ”b”, followed by ”y”.

‘|’ has higher precedence than concatenation (the comma operator, Section 3.4), so the
parentheses in the above example are not needed. Multiple ‘|’ patterns may be specified
together, for example:

"x", "a" | "b" | "ZZZ" | "", "y"

matches ”x”, followed by ”a” or ”b” or ”ZZZ”, followed by ”y”, or ”x” directly followed by
”y” (matching the empty pattern ”” in the or).

Do not confuse the low–level ‘|’ operator with the high–level OR operator discussed later in
Section 8.1. The high–level OR operator specifies the occurrence of alternative patterns at
any positions in the scanned data.

6.2 Byte Expressions (bytes, byte ranges, characters, decimal, hex)

Bytes, byte ranges, and compliments of bytes and byte ranges can be specified using
characters and decimal or hex integers. Characters are written using ’single quotes’. Hex
integers may be written as 0xdd or ’\xdd’ where dd represents two hexadecimal digits (from
the set 0..9, a..f, A..F). Byte ranges are written in the form start–end, and complement is
specified using a circumflex (^) prefix.
Examples:

65
0x41
’\x41’
’A’ any of these matches a byte whose value is 65 (decimal)
’a’-’f’ matches a byte whose value is in the range 0x61-0x7a
^0-10 matches a byte whose value is not in the range 0-10

VSTK Manual 5th Edition 207 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

6.3 Set Expressions {braces}

Sets of string or byte patterns are specified by enclosing the patterns in { braces }. For
example:

{ "abc", 0-9 } matches any one of the bytes ’a’, ’b’, ’c’, 0, 1, ..., 9

Sets can be complimented using ^:

^{ "abc", 0-9 } matches a byte which is not in the set ’a’, ’b’, ’c’, 0, 1, ..., 9

Sets can also contain other sets or complimented sets.

6.4 Fuzzy Expressions (plus/minus offsets)

Fuzzy expressions are a convenient way of specifying ranges for bytes and strings. Fuzziness
is specified using integers which represent plus and minus offsets. Examples:

FUZZY 2 100
FUZZY +-2 100are the same as: 98-102 fuzzy -2 +2 100

FUZZY -2 +3 "cow"is the same as: ’a’-’f’, ’m’-’r’, ’u’-’z’

Recognized case–insensitive spellings for the fuzzy operator are FUZZY and FUZZ.

6.5 Repetition Expressions

Multiple occurrences of bytes, byte ranges, sets, strings, or case-insensitive strings can be
specified by using [number] after the expression. For example:

15[20]
0xF[0x14] either form matches 20 occurrences of the byte value 15
0-10[40] matches a sequence of 40 bytes whose values are in the range 0..10 "X"[3] matches
"XXX"

The repetition expression can also specify a range, for example: "X"[0-3] matches from 0 to 3
occurrences of "X"

6.6 Indefinite Offsets (.*)

The ‘.*’ operator is used to specify an indefinite offset, up to the next new line (”\n”)
character. This can be used when scanning text data to match patterns which must be
restricted to a single line of text. Example:

VSTK Manual 5th Edition 208 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

~"\nSubject:", .*, ~"herbal", .*, ~"viagra"

will match "\nSubject: 100% Pure Herbal Potent Viagra On Sale!"

As with the ‘@’ operator (see Section 3.4), it does not make sense to use ‘.*’ at the beginning
of a VDL segment, and such use will be reported as a parser error using the VFind -d,–dup-
check option (see Section 2.1).

6.7 Absolute Offsets (ABS #)

The ‘ABS’ operator is used to specify an absolute offset from the beginning of the scanned
data to match a pattern. The ‘EOD’ operator is used to match exactly at end-of-data. Example
VDLs:

; match Bourne shell script file header
;
:a1, ABS 0, "#!", WS0, "/bin/sh" #
; match "abc" followed by "def" within the next 20 bytes,
; and "01234" at absolute position 14
;
:a2, "abc", @0-20, "def" AND ABS 14, "01234" #
; match the 8-byte Microsoft signature header which appears
; at the very beginning of most Microsoft application files,
; and "\xFE\xCA" anywhere in the scanned data
;
:MS/VBA, ABS 0, "\xD0\xCF\x11\xE0\xA1\xB1\x1A\xE1" AND "\xFE\xCA" #
; match "zzz" only if it appears exactly at the end of the scanned data
;
:a3, "zzz", EOD #
; match a scanned data file which is exactly 4 bytes long and contains "abc\n"
;
:a4, ABS 0, "abc\n", EOD #

Section 4.1 showed an example VDL to match the EICAR13 test pattern anywhere in a file.
But a more precise definition of the EICAR test says: the file starts with the following 68
characters, and is exactly 68 bytes long. Using absolute offsets, the following VDL precisely
matches that definition:
:EICAR TEST -- Fake Virus -- IGNORE, ABS 0, "\x58\x35\x4f\x21\x50\x25\x40\x41\
\x50\x5b\x34\x5c\x50\x5a\x58\x35\x34\x28\x50\x5e\x29\x37\x43\x43\x29\x37\x7d\
\x24\x45\x49\x43\x41\x52\x2d\x53\x54\x41\x4e\x44\x41\x52\x44\x2d\x41\x4e\x54\
\x49\x56\x49\x52\x55\x53\x2d\x54\x45\x53\x54\x2d\x46\x49\x4c\x45\x21\x24\x48\
\x2b\x48\x2a", EOD #

13 European Institute for Computer anti-virus Research. http://www.eicar.com/.

VSTK Manual 5th Edition 209 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

But a further refinement of the EICAR specification states: The first 68 characters is the
known string. It may be optionally appended by any combination of white space characters
with the total file length not exceeding 128 characters. The only white space characters
allowed are the space character, tab, LF, CR, CTRL–Z. Using a combination of absolute
offsets, a set, and repetition expression, the following VDL precisely matches that definition:

:EICAR TEST -- Fake Virus -- IGNORE, ABS 0, "\x58\x35\x4f\x21\x50\x25\x40\x41\
\x50\x5b\x34\x5c\x50\x5a\x58\x35\x34\x28\x50\x5e\x29\x37\x43\x43\x29\x37\x7d\
\x24\x45\x49\x43\x41\x52\x2d\x53\x54\x41\x4e\x44\x41\x52\x44\x2d\x41\x4e\x54\
\x49\x56\x49\x52\x55\x53\x2d\x54\x45\x53\x54\x2d\x46\x49\x4c\x45\x21\x24\x48\
\x2b\x48\x2a", {" \t\r\n\x1a"}[0-60], EOD #

6.8 Offset Groups

Offset ranges, indefinite offsets, and absolute offsets can be applied to groups of
patterns, resulting in simpler and more readable VDLs. Examples:

The VDLs:

:o1, "t1", @-10, ("t2"|"t3") #
:o2, "t1", .*, ("t2"|"t3") #

:o3, ABS 0, ("t2"|"t3") #

are equivalent to:
:o1, "t1", (@-10,"t2"|@-10,"t3") #

:o2, "t1", (.*,"t2"|.*,"t3") #

:o3, ABS 0,"t2"|ABS 0,"t3" #

6.9 Exercises

Select some spam and clean e-mail samples and write VDLs to match the spam samples.
Run the VDLs on new mail to split it into spam and clean samples, then use those
samples to create a Bayes database.

VSTK Manual 5th Edition 210 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Chapter 7 CVDL and Text

Although VFind treats all data as binary, this just means that no data is skipped when
scanning, not even line terminators that may appear in text files. A text file is simply a special
case of a binary file, one that tends to not have 8–bit or control characters, with human
readable data organized by lines and separated carriage–return and/or new line characters. For
scanning text data, CVDL provides a set of specialized operators described in this chapter.

CVDL also provides a file type restriction directive, described in Section 11.1, that can be
used to restrict the scope of VDLs to be applied only to text files, which can reduce scanning
time and the potential for false hits.

7.1 White space (W0, W1)

There are two special operators, ‘W0’ and ‘W1’, for offsets consisting of white space
characters as defined by the C library isspace() function, i.e. characters ”\t” (horizontal tab),
”\n” (new line),
”\v” (vertical tab), ”\f” (form feed), ”\r” (carriage return), and ” ” (space).

W0 matches zero or more white space characters
W1 matches one or more white space characters

Examples:

"From:", W0, ~"<spam@spam.com>"
~"Bulletproof", W1, ~"Web", W1, ~"Hosting"

7.2 White space (shell)(WS0, WS1)

There are two special operators, ‘WS0’ and ‘WS1’, for offsets consisting of characters which
are treated as white space by the UNIX shells, i.e. characters ” ” (blank), ”\t” (horizontal tab),
and
”\\\n” (backslash new line):

WS0 matches zero or more shell white space characters
WS1 matches one or more shell white space characters

Examples:

"/bin/rm", WS1, "-rf", WS1, "/"
"cat", WS0, ">>", WS0, "/etc/passwd"

VSTK Manual 5th Edition 211 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

7.3 White space and Punctuation (WP0, WP1)

There are two special operators, ‘WP0’ and ‘WP1’, for offsets consisting of white space and
punctuation characters as defined by the C library isspace() and ispunct() functions. The
punctuation characters are:
! " # $ % & ’ () * + , - . / : ; < = > ? @ [\] ^ _ ‘ { | } ~

WP0 matches zero or more white space or punctuation characters
WP1 matches one or more white space or punctuation characters

Example:

~"bomb", WP1
matches ”bomb ” and ”bomb. ” but does not match ”bombastic” or ”bombproof”.

7.4 Skipping White space and Punctuation (~~)

The ‘~~’ operator was designed for matching phone numbers, and is an extension of the case–
insensitive string matching ‘~’ operator. ‘~~’ performs case–insensitive string matching while
skipping any white space and punctuation characters. White space and punctuation characters
are those defined by the C library isspace() and ispunct() functions. Examples:
~~"123-456-7890"

matches "(123)-456-7890" and "123.456.7890" and
"1 2 3 - 4 5 6 - 7 8 9 0", etc.

~~"800 FREE CAR"
matches "(800) - F r e e C a r !!!", etc.

7.5 Wildcard White space (~W)

The '~W' operator was designed for case–insensitive matching for sequences of words
separated by white space, where white space characters are those defined by the C library
isspace() function. The ” ” (blank) character acts as a white space wildcard in the VDL, and
will match
one or more white space characters in the data being scanned. Examples:

~W" this is a test"
matches " this \r\nis a test" matches "\nthis \r\nis a test"
~W"\nthis is a test"
matches "\nthis \r\nis a test"
does not match " this \r\nis a test"

VSTK Manual 5th Edition 212 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

7.6 Digits (\d+)

The \d+ operator matches one or more digits, and is named after the similar Perl operator.
This can be used, for example, to detect obfuscated URLs:

"http://", \d+, "/"
matches URLs like http://3626287830/

"http://0", \d+, ".", "0", \d+, ".", "0", \d+, ".", "0", \d+, "/"
matches URLs like http://00000325.0000030.00000341.00000116/

can also be written using a macro:

$define zerod "0", \d+
"http://", $zerod, ".", $zerod, ".", $zerod, ".", $zerod, "/" CVDL macros are discussed in detail
in Chapter 10.

7.7 Only Digits (~#)

The'~#' operator matches only digits, skipping all other characters, over a default maximum
range of 30 bytes of scanned input data. The maximum range of scanned input data can be
specified by placing a number between ‘~#’ and the digit string.

Examples:

~#"code 1234 sub-code 567"

matches the digits 1234567 in sequence, regardless of any intervening non-digit characters,
over any 30 byte range of scanned input data, e.g. it will match "1abc2efg34---5 6 7"

~#60"code 1234 sub-code 567"

As above, but over a maximum range of 60 bytes of input data.

VSTK Manual 5th Edition 213 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

7.8 Floating–point Comparison (%f>)

The operator pair '%f>' can be used to extract a floating–point value from scanned text data
and compare it to a constant. It will match if the value is greater than the constant. For
example:

"Fuz1=", %f > 0.5
will match if the data following the string ”Fuz1=” is a floating–point value greater than 0.5,
e.g.

it will match ”Fuz1=0.76”.

‘%f’ should only be used in conjunction with a file–type restriction or preceding match so that
the presence of floating–point data is assured. As the first pattern in a VDL it is only tried
once, at the beginning of the scanned data buffer.

The ‘%f >’ operator pair was first added to CVDL on an experimental basis for use in
checking Bayesian spam probabilities, and has subsequently been found to be useful for
checking other types of numerical text data. Eventually, floating–point comparison operators
besides > (i.e. <, ==, <=, >=, !=) may also be added to CVDL.

7.9 Exercises

Write a VDL to detect the following data, including the two new line characters:

Mary had a little lamb
Its fleece was white as snow.

a)in MS/Win text;
b)UNIX text;
c)platform independent.

VSTK Manual 5th Edition 214 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Chapter 8 High–Level CVDL – AND, OR, XOR and NOT

Originally, CVDL had only one high–level logic operator, ‘&’, meaning AND. The
current logical operators are “AND”, “OR”, “XOR”, and “NOT”, which allow construction
of arbitrarily complex logic patterns. Also, a file size operator is available, and is used
with comparison operators to produce logical values.

The precedence of the logic operators is, in order of decreasing precedence: NOT, AND,
XOR, OR. Parentheses can be used to group operations into a desired execution order
irrespective of operator precedence.

8.1 AND and OR

AND and OR are used to logically combine pattern matching results. Let t1...t4 represent any
CVDL pattern, and consider the following VDLs:

:v12, t1 AND t2 #
:v34, t3 OR t4 #

v12 will match only if t1 matches anywhere in the scanned data and t2 also matches anywhere
in the same scanned data. v34 will match if either t3 or t4 (or both) match.

Both of these are independent of the positions of the matches in the data; for example, t4 could
match a pattern that precedes the pattern matched by t3. In contrast, the low–level or operator
‘|’ discussed in Section 6.1 specifies the occurrence of alternative patterns at a position relative
to the preceding pattern in the scanned data.

Some examples illustrating the precedence of the operators:

:ex1a, "pets" AND "cat" OR "dog" #
:ex1b, ("pets" AND "cat") OR "dog" # ; same as ex1b
:ex2a, "pets" AND ("cat" OR "dog") #
:ex2b, ("pets" AND "cat") OR ("pets" AND "dog") # ; same logically as ex2a

VDLs ex1a and ex1b are equivalent due to the higher precedence of AND as compared to OR,
and will match data that contains either: the word ”pets” anywhere and the word ”cat”
anywhere; or the word ”dog” anywhere. If the intention was to match data containing the
word ”pets” anywhere, and either the word ”dog” or the word ”cat” anywhere, then
parentheses can be used as in VDL ex2a and ex2b.

VSTK Manual 5th Edition 215 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

8.2 XOR and NOT

NOT by its self seems to be a strange logical operator for pattern matching, since it means that
a match must have been made if some pattern is not present; however, consider a situation
where all files or e-mail must contain a certain notice, and the user wants to detect the lack of
that notice.

An example pattern is:
:missing, NOT "Copyright 2005, CyberSoft Operating Corporation" #

XOR is the exclusive–OR operator, which by definition can be expressed using AND and OR:
a XOR b == (a AND NOT b) OR (b AND NOT A) For example, VDL ex3:
; guns or bullets, but not both
;
:ex3, ("guns" AND NOT "bullets") OR ("bullets" AND NOT "guns") #
can be expressed more efficiently using XOR:
:ex3, "guns" XOR "bullets" # ; guns or bullets, but not both

8.3 File Size Operator

The CVDL file size operator returns the size in bytes of the file or data being scanned, if
known. It can be written as ‘SIZE’, ‘Size’, or ‘size’, and is used with the comparison
operators: < > !=
== <= >=

Examples:

:s0, size > 100 #
:s1, size == 5 AND "abc" #
:s2, size < 5 AND "abc" #
:s3, 5 > size AND "abc" #
:s4, ((10 <= size AND size <= 20) OR size > 1000) AND "abc" #

VDL s0 will match if the data size is greater than 100 bytes regardless of the contents of the
data. For the other examples the data must contain the string ”abc” in order to match.

VDL s1 will only match if the data size is exactly 5 bytes. VDLs s2 and s3 are identical and
only match if the data size is less than 5 bytes. VDL s4 will match if the data size is between
10 and 20 bytes inclusive, or greater than 1000 bytes.

Note that if the data size is not available, the size operator will not match, regardless of the
comparison operator used.

VSTK Manual 5th Edition 216 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

8.4 File Name Operator

The CVDL file name operator compares the quantified name of the file being scanned with an
arbitrary low–level CVDL pattern, and returns true if the pattern is matched by the file name.

The quantified file name is the name reported by VFind’s “Checking file:” report, including
the double quotes. In a quotified file name, any literal double quotes will be displayed
as \",and newline characters as \n. When processing SmartScan output from UAD, the file
name will include both the top–level and component–level file names. For example:

% cd examples/hlcvdl
% VFind --liboff=’*’ abc |& grep ’Checking file:’
##==> Checking file: "abc"
% uad -ssw abc.tar | VFind --liboff=’*’ -ssr |& grep ’Checking file:’
##==> Checking file: "abc.tar" -> "ZZabcYY"
##==> Checking file: "abc.tar" -> "abc"

The three quotified file names reported above are: "abc"
"abc.tar" -> "ZZabcYY" "abc.tar" -> "abc"

including the double quotes.
The file name operator consists of the word ‘NAME’ (case–insensitive), followed by ~=,
followed by the pattern to match.

For example:

% cat name.vdl
:contains-abc, name ~= "abc" #
:exactly-abc, name ~= ABS 0, "\"abc\"", EOD #
:exactly-abc-regex, name ~= ~R"^\"abc\"$" #
:component-abc, name ~= "-> \"abc\"", EOD #

The first VDL will match any file name containing the three–letter substring “abc”. The
second VDL uses ‘ABS’ and ‘EOD’ (see Section 6.7) to match only if the reported file name
is exactly equal to the five–letter string ”abc”, including the double quotes, and the third VDL
uses a regular expression pattern (see Chapter 9) to perform the same match. The last VDL
matches on a SmartScan component file name of ”abc”. Example runs:

VSTK Manual 5th Edition 217 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

% VFind --liboff=’*’ --vdl=name.vdl abc ZZabcYY |& grep ’VIRUS’
##==>>>> VIRUS POSSIBLE IN FILE: "abc"
##==>>>> VIRUS ID: CVDL exactly-abc-regex
##==>>>> VIRUS POSSIBLE IN FILE: "abc"
##==>>>> VIRUS ID: CVDL exactly-abc
##==>>>> VIRUS POSSIBLE IN FILE: "abc"
##==>>>> VIRUS ID: CVDL contains-abc
##==>>>> VIRUS POSSIBLE IN FILE: "ZZabcYY"
##==>>>> VIRUS ID: CVDL contains-abc
% uad -ssw abc.tar | VFind -ssr --liboff=’*’ --vdl=name.vdl |& grep ’VIRUS’
##==>>>> VIRUS POSSIBLE IN FILE: "abc.tar" -> "ZZabcYY"
##==>>>> VIRUS ID: CVDL contains-abc
##==>>>> VIRUS POSSIBLE IN FILE: "abc.tar" -> "abc"
##==>>>> VIRUS ID: CVDL component-abc
##==>>>> VIRUS POSSIBLE IN FILE: "abc.tar" -> "abc"
##==>>>> VIRUS ID: CVDL contains-abc

The two file names in this example, ”abc” and ”ZZabcYY”, both contain the ”abc” substring,
so the contains-abc VDL always matches. Note that the exactly-abc VDLs match ”abc” when
scanned directly by VFind, but they do not match when file ”abc” is a component extracted
from a tar archive (which does match the component-abc VDL).

As an application of the file name operator for detecting side–effects of a virus infection, it has
been noted that the W32.Mytob.FT@mm virus adds a registry value containing the string
”skybotx.exe” to SYSTEM.DAT. This string on its own or appearing in any file other than
SYSTEM.DAT would not be suspicious. So the following VDL matches only if the string
appears in SYSTEM.DAT:

% cat system.vdl
:W32.Mytob.FT@mm SYSTEM,
name ~= { ’"’, ’/’, ’\\’ }, ~"system.dat\"" AND "skybotx.exe" #

The file name operator above will match a quotified case–insensitive system.dat file name
(e.g.
”SYSTEM.DAT”) or path name (e.g.”\WINDOWS\SYSTEM.DAT” or
”/pc/export/system.dat”).

8.5 Exercises

Select a set of system text files (e.g. man pages) and look through some of them for common
words and phrases. Then create a set of VDLs using combinations of AND and OR operators,
and scan all of the selected files using those VDLs.

VSTK Manual 5th Edition 218 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Chapter 9 CVDL and Regular Expressions

Regular expressions (regex) are a powerful pattern matching mechanism originally designed
as part of the UNIX operating system, and currently standardized by the Open Group14. Regex
operates on character strings, i.e. sequences of non–zero bytes terminated by a zero byte, and
is generally line–oriented, so it is suitable only for pattern matching in text.

VFind and CVDL were designed for fast pattern matching on binary or text data. Some of the
low–level CVDL pattern matching operators are similar to regex, but CVDL is not restricted
to text. As CVDL evolved to meet the needs of specialized scanning, particularly for use in
detecting e-mail spam by SafeInternetEmail15, more operators similar to regex were added.
Eventually, a direct interface to the complete capabilities of regex was added.

Note that although VFind and CVDL operate on arbitrary binary data, regex only works on
text. Before invoking a regex during scanning, VFind temporarily appends a zero byte to the
buffer being scanned so that the regex does not run off of the end.

This chapter describes the use of regex with CVDL, including summaries of basic and
extended regular expressions. For more information about regex, recommended references are
the O’Reilly book by Friedl16, the Open Group17, and the UNIX man pages for regcomp(3C),
regexec(3C), and regex(5).

9.1 Regex Operator '~R' operator

CVDL regular expression matching is specified using the '~R' operator followed by zero or
more single–letter regex option settings, followed by a string containing the regex pattern.
Option settings correspond to the flags passed to regcomp(3C) to compile the pattern:

14 http://www.opengroup.org/, ed., The Open Group Base Specifications Issue 6. IEEE Std
1003.1, 2004.
15 SafeInternetEmail. http://safeinternetemail.com/.
16 J.E.F. Friedl, Mastering Regular Expressions, Second Edition. O’Reilly, 2002.
17 http://www.opengroup.org/, ed., The Open Group Base Specifications Issue 6. IEEE Std
1003.1, 2004.

VSTK Manual 5th Edition 219 of 343

X REGEXTENDED Use extended regular expressions.
I REGICASE Ignore case in match.
N REGNEWLINE

B REGNOTBOL

E REGNOTEOL

If not set, then a new line character will be treated as an
ordinary character.
The first character of the data is not the beginning of a line;
therefore, the circumflex character (^), when used as a
special character, will not match the beginning of the data.

The last character of the data is not the end of a line;
therefore, the dollar sign ($), when used as a special
character,will not match the end of the data.

VSTK Manual 5th Edition CyberSoft Operating Corporation

If no regex options are specified, the result is a case–sensitive basic regular expression with
new line treated as an ordinary character. Note that a regular expression as the first pattern in
a VDL is only applied once, at the beginning of the scanned data buffer.

A useful feature of basic regex, which is not available in extended regex, is the ability to tag
subexpressions and then use back–references to the tags. For example:

% cd examples/regex
% cat bob.msg
From: somebody@somewhere.com
To: cyberbob@cyber.com
Subject: welcome to spam heaven CyberBob

hi
% cat r1.vdl
:r1, ~"\nTo:", W0, ~RI"\\([^@\n]*\\)@.*\\1" #

% VFind --liboff=’*’ --vdl=r1.vdl bob.msg |& grep VIRUS
##==>>>> VIRUS POSSIBLE IN FILE: "bob.msg"
##==>>>> VIRUS ID: CVDL r1
##==>>>> VIRUS END OFFSET: 92, matched: heaven CyberBob
%

The first part of VDL r1 matches a new line followed by ”To:” (case–insensitive) followed by
zero or more white space characters. The regex part produces the case–insensitive pattern "\
([^@\n]*\)@.*\1" which is intended to match the userid portion of an e-mail address occurring
again anywhere after the initial occurrence. It works as follows: after matching ”To:”, the
regex sub-expression [^@\n] matches any sequence of characters up to the first @ or \n, and
that match is tagged since it is enclosed by \(and \). That match would be the userid portion
of the mail address.

Then the rest of the pattern @.*\1 matches @ followed by zero or more of any characters
followed by an occurrence of the previously tagged sub-expression, reference by \1 in the
regex.

Note that a regular expression is specified as a CVDL string, so it is subject to interpretation
of escape sequences (see Section 3.3). This is why the example above used two backslashes
to produce one. Also, \n in the regex string produced a literal new line in the pattern.

VSTK Manual 5th Edition 220 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

9.2 Trigger Data

As discussed in detail in Chapter 13, many CVDL operators, including regex, are not able to
be implemented in the VFind parallel search engine. To improve run–time speed for regex,
the regex string may optionally be followed by a parenthesized expression containing trigger
data for the fast/parallel search. The only CVDL elements accepted in the trigger data are
strings, concatenation, low–level or, parentheses, and AND (see Section 12.4).

For example:

:r2, ~RX"abcd.*(efgh|xxxx).*zzzz" ("abcd", "efgh" | "xxxx", "zzzz") #

VDL r2 specifies an extended regular expression, including trigger data. The regex will not be
triggered to run unless the parallel search engine first encounters the trigger data.

9.3 Summary of Basic Regular Expressions

Characters in a basic regular expression are classified as either ordinary or special. The
special characters are .][\ * ^ $ and all other characters are ordinary. A special character
preceded by a backslash becomes an ordinary character that matches the special character
itself. The ordinary characters () { } 1 2 3 4 5 6 7 8 9 become special when preceded by a
backslash.

A bracket expression is a set of characters enclosed in [square brackets]. It matches any single
character from the set, unless the first character in the set is a circumflex (^), which negates
the set so it matches any single character not in the set. A range of characters can be specified
using a hyphen, for example ‘[0-9]’ is the same as ‘[0123456789]’. In a bracket expression,
the special characters . *][\ lose their special meaning and become ordinary characters.

In a bracket expression the following character class expressions are supported: [:alnum:],
[:alpha:], [:blank:], [:cntrl:], [:digit:], [:graph:], [:lower:], [:print:], [:punct:], [:space:],
[:upper:], [:xdigit:]. So, for example, ‘[0-9]’ may be alternatively written as ‘[[:digit:]]’.

A period (.), when used outside a bracket expression, matches any single character. A
character followed by an asterisk (*) matches zero or more consecutive occurrences of the
character. Thus ‘.*’ matches zero or more of any characters, i.e. it matches anything or
nothing. For example, ”a.*b” would match ”ab”, ”aZb”, ”aZZb”, ”aXYZXYZb”, etc.

The circumflex (^) and dollar sign ($) match the beginning and end of data respectively,
unless the REG NEWLINE option is set, then they match the beginning and end of a line
respectively.

A subexpression can be defined by enclosing it between the character pairs \(and \). The
back–reference expression \n, where n is a digit 1..9, matches the same string of characters as
was matched by the n’th subexpression.

VSTK Manual 5th Edition 221 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

A pattern matching a single character, a subexpression, or a back–reference can optionally be
followed by an interval expression of the form \{m\}, \{m,\} or \{m,n\} to match repeated
consecutive occurrences of the pattern. m specifies the exact or minimum number of
occurrences and n specifies the maximum number of occurrences. \{m\} matches exactly m
occurrences, \{m,\} matches at least m occurrences, and \{m,n\} matches any number of
occurrences between m and n, inclusive.

9.4 Summary of Extended Regular Expressions

The rules specified for basic regular expressions also apply to extended regular expressions
with the following exceptions: the characters | + ? are special; the { } characters, when used as
the duplication operator, are not preceded by backslashes, \{ and \} simply match the
characters { and }, respectively; the back reference operator is not supported; anchoring using
^ and $ is supported in subexpressions.

Two expressions separated by a vertical–line (|) match a string that is matched by either
expression. In other words, | is the extended regular expression ‘or’ operator. An expression
followed by a plus–sign (+) matches one or more consecutive occurrences of the pattern, and
an expression followed by a question–mark (?) matches zero or one consecutive occurrences.

9.5 Exercises

1. Try to construct trigger data for the regex in VDL r1 from Section 9.1. Modify the
problem and produce a regex from which good trigger data can be constructed. Hint: instead
of matching the userid anywhere after the initial occurrence, match it in a Subject: header.
2. For VDL r2 in Section 9.2, what is the difference between patterns matched by the regex
vs. patterns matched by the trigger data? Can an equivalent VDL be written without using the
CVDL regex operator?

VSTK Manual 5th Edition 222 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Chapter 10 CVDL Macros

CVDL includes the ability to define macros, which expand to their definition when invoked,
and simplify the repeated use of patterns. For patterns which are used frequently in VDLs,
there is also a storage advantage provided by macros, discussed in Section 10.4.

10.1 Defining VDL Macros

A VDL macro is specified using $define as the first word on a line, and the entire macro
definition must be contained all on one line. The syntax is:$define name value where the line
contains: optional leading white space, $define, white space, name, white space, value.

The macro name must start with a letter from the set { ’a’-’z’, ’A’-’Z’, ’ ’ } followed by 0 or
more letters or digits. Note that macro names are case-sensitive. The value continues to the
end of the line, and trailing white space is trimmed.

10.2 Using VDL Macros

VDL macros are invoked by specifying their name after a $ character. Macros are lexical
tokens, which means that they can not be confused with other tokens, e.g. strings. Thus:
"abc", $mac, ...

invokes the macro named mac, but: "abc$mac", ...

does not invoke any macro, and is simply a literal string.

VDL macros can be nested to unlimited depth, so macros can refer to other macros in their
definition. Macros cannot be used in a VDL rule before being defined, but they can be used in
other VDL macro $define’s before being defined.

10.3 VDL Macro Examples

Some examples using AND and OR:
$define pf1 $pets AND $food
$define pets "dog" OR "cat"
$define food "fish" OR "pie"
$define pf2 ($pets) AND ($food)

:v1, $pf1 AND "ate" #
:v2, "ate" AND $pf2 #

Note that pf1 resolves to:"dog" OR "cat" AND "fish" OR "pie" which is the same as:"dog" OR
("cat" AND "fish") OR "pie" but pf2 resolves to:("dog" OR "cat") AND ("fish" OR "pie")

VSTK Manual 5th Edition 223 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

As with C/C++ #define macros, parentheses may be used in the VDL macro definition or
invocation to ensure that the intended result is obtained.

For detecting spam, macros have been used to define alternative representations of letters
which are frequently used for obfuscation, for example:

% cd examples/macros
% cat letters.vdl
; some spam letters
;
$define letterP {"Pp\xDE\xFE"}
$define letterI {"Ii1;!|:Ll\xa1\xa6\xcc\xcd\xce\xcf\xec\xed\xee\xef"}
$define letterL {"Ll1!|:;\xef\xa1\xa6"}
$define letterS {"Ss$2Zz\xa7\x8a\x9a"}
% cat spam.vdl
; pills
;
$define pillz $letterP,@-3,$letterI,@-3,$letterL,@-3,$letterL,@-3,$letterS
:vpillz, ~"discount", .*, $pillz #
% cat x.dat
DISCOUNT p-i-1-1-z
% VFind --liboff=’*’ --vdl=letters.vdl --vdl=spam.vdl x.dat |& grep VIRUS
##==>>>> VIRUS POSSIBLE IN FILE: "x.dat"
##==>>>> VIRUS ID: CVDL vpillz
##==>>>> VIRUS END OFFSET: 18, matched: COUNT p-i-1-1-z
%

For detecting viruses, macros have been used to specify variable machine code segments to
match polymorphic samples. The following examples are from the VFind VDLs version
VFind13-2005-05-25-09-36-46 macros.vdl and 166+.vdl files:
$define junk (0xB8-0xBF,0x00-0xFF[2])|(0xEB,0x04-0x0F)| (0x81,0xC0-0xC7|0xD0-0xDF|
0xE8-0xF7,0x00-0xFF[2])
$define crypt (0x80,0xB4-0xB7,0x00-0xFF[3])
$define incofs (0x43|0x45|0x46|0x47)
$define inccnt (0x40|0x41|0x42|0x43|0x45|0x46|0x47)
$define cmpcnt (0x81,0xF8|0xF9|0xFA|0xFB|0xFD|0xFE|0xFF,0x00-0xFF[2])
$define jzend (0x74,0x00-0x7F) ; jumps only forward
$define loop (0xE9,0x00-0xFF,0x80-0xFF) ; jumps only backward

:Fono.poly,<".COM","EXE"> $junk,@-0x100,$crypt,$junk,@-0x100,$incofs,
$junk,@-0x100,$inccnt,$junk,@-0x100,$cmpcnt,$jzend,$junk,@-0x100,$loop#

Besides heavy use of macros, the Fono.poly VDL also specifies a file type restriction (see
Section 11.1) so that it will only scan Microsoft executable files.

VSTK Manual 5th Edition 224 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

10.4 VDL Macro Storage Advantage

H2: VDL Macro Storage Advantage

The data associated with the definition of a macro is stored only once, regardless of how many
times the macro is used. In contrast, identical data which is repeated in VDL definitions is
stored separately for each occurrence.

For example, if the string ”http://” is used 100 times in VDL definitions, that string will be
stored separately 100 times, and use a total of 100*8 = 800 bytes storage (internally the string
includes a terminating 0 byte at the end, so uses 8 bytes). But if the user defines a macro:

$define http "http://"

and use $http in the VDL definitions instead of the literal ”http://” string, then the string is
stored only once, regardless of how many times the macro is used. There is an internal 16-
byte overhead associated with macro data storage, so for this example the total is 16+8 = 24
bytes, compared to 800 bytes without using a macro.

10.5 Exercises

1. Contrive an example using 50 VDLs all containing a particular string. Then create a
compatible VDL file with the string replaced by a macro. Compare performance, both run–
time CPU and RAM usage, with and without macros.

VSTK Manual 5th Edition 225 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Chapter 11 CVDL Meta Operators

The CVDL meta operators control various features of scanning. They are specified either as
directives which apply to all VDLs in a CVDL file, or applied for a single VDL.

The meta operators are written inside < angle brackets > and their general syntax is:
< "filetype", "filetype", ...>; list of file types to scan
< ! "filetype", "filetype", ...>; list of file types to not scan
< "version=nnnnnn" >; report version number nnnnnn
< "start=value", "limit=value" >; restrict scan range
< "notell" >; turn off reporting hits
< "sticky" >; stay on if hit
< "clear" >; clear sticky hit

When applied to a single VDL, the meta operators are specified directly after the comma
following the VDL name, before the VDL definition. When specified as part of a VDL, the
directives apply only for that particular VDL. When specified outside of a VDL, the
directives have VDL file scope and apply only for VDL rules which appear following the
directive in the same VDL file.

11.1 File Type Restriction Directives

File type restriction directives are written in the form:

< "filetype", "filetype", ...>; list of file types to scan
< ! "filetype", "filetype", ...>; list of file types to not scan
< >; resets to scan everything.

specifying a list of one or more file types to scan or to not scan. An empty directive resets to
scan everything regardless of file type.

To utilize file type restrictions most effectively, UAD should be used with the SmartScan –
ssw option, piped into VFind with the -ssr option. If run without UAD/SmartScan input,
VFind does recognize the following file types on its own: “EXE”, “OLE”, “Java class file”,
“text”, “text (8- bit)”, “.COM”, otherwise “unknown”.

Note that the file type “unknown” is considered a valid type, since it means that the type is not
one of the many types recognized which may be placed in a file type restriction directive, so
something indeed is known about the type. In this case, all file type restrictions will be
applied. For example, a VDL specifying a file type restriction of <“text”> will not scan a file
type of “unknown”.

VSTK Manual 5th Edition 226 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Examples:

:v1,"..."# ; applied for all file types
<"text"> ; only "text" file types for the following vdls
:v2,"..."# ; only "text"
:v3,"..."# ; only "text"
<!"HTML"> ; no "HTML" file types for the following vdls
:v4,"..."# ; only non-"HTML"
:v5,<"JPEG","GIF">"..."# ; only "JPEG" and "GIF" file types
:v6,"..."# ; only non-"HTML"
<> ; all file types for the following vdls
:v7,"..."# ; applied for all file types.

Matching for file type restrictions is case–sensitive, and only requires that the VDL–restricted
type be a substring of the file type.

11.2 VDL Version Reporting

Versions for VDL files and rules can be reported using an extension to the file type restriction
syntax. If the user specifies a string starting with version= in a file type restriction directive,
whatever follows the ‘=’ character in that string will be printed as an informative message
about the version of the VDL file or rule.

The following example specifies a version for the VDL file and a version for VDL rule ‘b’:
% cd examples/meta
% cat v.vdl

<"text",“version=1.2.3”>

:a, "abc"#
:b, <"version=9.9"> "bbb"#

% VFind --vdl=v.vdl hi
...
##==>> Loading VDL code from: v.vdl
##==>> All SmartScan file types disabled.
##==>> SmartScan file type ‘*text*’ enabled.
##==>> VDL file ‘v.vdl’ Version: 1.2.3
##==> VDL model for ‘a’ loaded.
##==> VDL ‘b’ Version: 9.9
##==> VDL model for ‘b’ loaded.
##==> Checking file: "hi"
...

VSTK Manual 5th Edition 227 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

11.3 VDL start/limit specification

The start/limit specification is not a CVDL operator; instead, it fits in with the VDL <“meta-
data”>, like the file-type restrictions and version= specification.

For example:

:x, <"start=10","limit=20"> "abc" #

The VDL above will only scan data starting at offset 10 with a limit of 20 bytes scanned. In
general, if start is not specified it will start at offset 0, and if limit is not specified there is no
limit. Thus the user can use start and limit together, or just one of them. Where appropriate,
by restricting the offset and size of data scanned by a VDL using the start/limit specification,
VFind may run faster.

The start/limit specification can be mixed in with file type restrictions and the version
specification.

For example:

% cat y1.vdl
:y1, <"text", "start=100", "limit=1000", "version=1.2.3"> "abc", @-100, "efg" #
% VFind --vdl=y1.vdl
...
##==>> Loading VDL code from: y1.vdl
##==> VDL ‘y1’ Version: 1.2.3
##==>> SmartScan file types enabled for VDL model ‘y1’: ‘*text*’
##==> VDL model for ‘y1’ loaded.
...
% cat y2.vdl
:y2, <!"GIF", "JPEG", "start=100"> "frog", @-100, "fish" #
% VFind --vdl=y2.vdl
...
##==>> Loading VDL code from: y2.vdl
##==>> SmartScan file types disabled for VDL model ‘y2’: ‘*JPEG*’ ‘*GIF*’
##==> VDL model for ‘y2’ loaded.

VSTK Manual 5th Edition 228 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

11.4 VDL notell specification

The notell specification is not a CVDL operator; instead, it fits in with the VDL <“meta-
data”>, like the file-type restrictions and version= specification. It turns off reporting of
individual patterns, the same as the VFind –notell= and –notells= command-line options.

For example:

% cat n.vdl
<"notell">
:x,"a"#
:y,<!"notell">"b"#
:z,"c"#
% cat n
cab
% VFind --vdl=n.vdl -p n
...
##==> VDL model for ‘x’ loaded (notell).
##==> VDL model for ‘y’ loaded.
##==> VDL model for ‘z’ loaded (notell).
...
##==> Checking file: "n"
##==>>>> VIRUS POSSIBLE IN FILE: "n"
##==>>>> VIRUS ID: CVDL y
11.5. META VDLS 81
##==>>>> VIRUS END OFFSET: 3, matched: cab
##==> Number of possible virus infections found in file "n": 1

The first notell specification turns off reporting for all subsequent VDLs in the n.vdl file;
however, for VDL y only, the notell is overridden by a !“notell” specification, so VDL y will
be reported. All three VDLs x, y, and z hit on file n, but only y is reported.

The notell specification can be useful in conjunction with meta VDLs which are discussed in
the next section.

11.5 Meta VDLs

Meta VDLs match on the names of other VDL hits, not on the data being scanned. They were
described previously in Section 4.5. Meta VDLs reside in a separate search engine and are
loaded from a file using the –vdlm= option.

Continuing the notell example from the previous section, if a meta VDL is created to match on
detection of VDLs x and z then it will match even though x and z are not reported:

VSTK Manual 5th Edition 229 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

% cat meta.vdl
:x and z, "CVDL x" and "CVDL z" #
% VFind --vdl=n.vdl --vdlm=meta.vdl -p n
...
##==> Checking file: "n"
##==>>>> VIRUS POSSIBLE IN FILE: "n"
##==>>>> VIRUS ID: CVDL y
##==>>>> VIRUS END OFFSET: 3, matched: cab
##==>>>> VIRUS POSSIBLE IN FILE: "n"
##==>>>> VIRUS ID: CVDL x and z
##==>>>> VIRUS END OFFSET: 6, matched: CVDL z
##==> Number of possible virus infections found in file "n": 2

In conjunction with notell VDLs, meta VDLs can be useful for detection with
UAD/SmartScan input that decomposes archives into separate components. Since each
component is scanned separately, it is not possible to create a regular VDL which would
match across components. Notell VDLs can be created to match individual components, and
then a meta VDL can be written to match on the notell hits.

For example:

% cat notell.vdl
<"notell">
:password, <"text"> ~"password" #
:image, <"text"> ~".gif", WP1 OR ~".jpeg", WP1 OR ~".bmp", WP1 #
:encrypted zip, <"encrypted zip"> 0-255 #
% cat meta2.vdl
:password and image and encrypted zip,
"CVDL password" AND "CVDL image" AND "CVDL encrypted zip" #
% uad -ssw -sst -M -z e.msg | VFind -ssr --vdl=notell.vdl --vdlm=meta2.vdl -p
...
##==> Checking file: "e.msg" -> "npxormprwo.gif"
##==> Checking file: "e msg" -> ""
##==> Checking file: "e.msg" -> "Your_complaint.zip"
##==> Checking file: "e.msg" -> "cnxkvl.exe"
##==> Checking file: "e.msg" -> "gchuttf.sys"
##==> Checking file: "e.msg" -> ""
##==>>>> VIRUS POSSIBLE IN FILE: "e.msg" -> ""
##==>>>> VIRUS ID: CVDL password and image and encrypted zip
##==>>>> VIRUS END OFFSET: 54, matched: L encrypted zip
##==> Number of possible virus infections found in file "e.msg": 1

VSTK Manual 5th Edition 230 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

The password VDL matches the word ”password” case–insensitively in any text component.
The image VDL matches any of three typical image file extensions. The encrypted zip VDL
demonstrates matching by file type; it will match the first byte in any component (since 0-255
is the range of all possible byte values) but is restricted to files of type “encrypted zip”.
Hits on the notell VDLs will not be reported, but the VDL names will be accumulated for
scanning by the meta VDL engine. The VDL in meta2.vdl simply requires all three notell
VDLs to be present. The e.msg file shown scanned above is an actual e-mail virus sample
where the password for the encrypted zip attachment is contained in the GIF image
component. Besides the attachments, the text body of e.msg contained the following, which
was matched by the password and image notell VDLs:

For security purposes the attached file is password protected. Password -- <img
src="cid:npxormprwo.gif">

11.6 VDL sticky and clear specifications

VDL hits are normally reset to zero after processing a file, but there may be situations where
one would want a VDL hit to be persistent. For example, if the components of the e.msg file
from the previous example were extracted into separate files and then scanned, the meta VDL
would not hit.

This case can be handled using the “sticky” specification, which makes VDL hits stick around
for all subsequent scanned files, for use with meta VDLs. Sticky VDL hits can be cleared if
necessary using a VDL with the “clear” specification.

Redoing the previous example, sticky.vdl is the same as notell.vdl except it has the “sticky”
specification; meta2 clear.vdl is the same as meta2.vdl except it has the “clear” specification.
The mail message components have been extracted into separate files in subdirectory e/,
which also contains an unrelated file hi.txt:

% cat sticky.vdl
<"notell", "sticky">
:password, <"text"> ~"password" #
:image, <"text"> ~".gif", WP1 OR ~ ".jpeg", WP1 OR ".bmp", WP1 #
:encrypted zip, <"encrypted zip"> 0-255 #
% cat meta2_clear.vdl
<"clear">
:password and image and encrypted zip,
"CVDL password" AND "CVDL image" AND "CVDL encrypted zip" #
% ls e/
Your_complaint.zip body.html hi.txt
% uad -ssw -sst -z e/* | VFind -ssr --vdl=sticky.vdl --vdlm=meta2_clear.vdl –p

VSTK Manual 5th Edition 231 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

...
##==> Checking file: "e/Your_complaint.zip"
##==> Checking file: "e/Your_complaint.zip" -> "cnxkvl.exe"
##==> Checking file: "e/Your_complaint.zip" -> "gchuttf.sys"
##==> Number of possible virus infections found in file "e/Your_complaint.zip": 0
##==> Checking file: "e/body.html"
##==>>>> VIRUS POSSIBLE IN FILE: "e/body.html"
##==>>>> VIRUS ID: CVDL password and image and encrypted zip
##==>>>> VIRUS END OFFSET: 18, matched: L encrypted zip
##==> Number of possible virus infections found in file "e/body.html": 1
##==> Checking file: "e/hi.txt"
##==> Number of possible virus infections found in file "e/hi.txt": 0

Note that if the meta VDL did not contain the ”clear” specification it would hit on hi.txt and
all subsequent files due to the persistent sticky VDL hits.

11.7 Exercises

Select one spam message which has a combination of features suitable to be matched by
notell and meta VDLs. Write the VDLs and test them on that message and a collection of
other clean and spam messages received.

VSTK Manual 5th Edition 232 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Chapter 12 CVDL Syntax Summary

CVDL syntax is described as a set of recursive parsing rules which are applied to “tokens”
produced by lexical preprocessing. Preprocessing skips comments and non–literal white
space, and expands macros.

We start with some definitions:

hex escape sequence \x or \X followed by two hex digits.
escape sequence \c or hex escape sequence. If character c is n, r, or t this represents new line,
carriage–return, or tab, respectively; otherwise it represents character c itself.
INTEGER A decimal or hex integer (e.g. 1234, 0xa9BE, 0Xff) or a single character or
escape
sequence in single ‘quotes’, (e.g. ’a’, ’\n’, ’\x9f’) or an escape sequence with no quotes.
BYTE An INTEGER in the range 0 to 255 inclusive.
DOUBLE A non–negative floating–point decimal value (e.g. 1.234)
STRING Zero or more characters or escape sequences in double “quotes”.
VDLNAME Following a colon (:), any characters except comma (,) up to a terminating
comma forms the VDL name.

12.1 Top–Level CVDL

The top level of CVDL is parsing of a file of VDLs:

file:
empty
file vdl
file <meta_list>
file <>
vdl:
:VDLNAME, top_or #
:VDLNAME, <meta_list> top_or #
:VDLNAME, <> top_or #
meta_list:
STRING
!STRING
meta_list, STRING

The first rule says that a file of VDLs is either empty or is a file followed by a vdl or meta
operator. When a VDL file is opened for processing, the user initially has nothing (i.e. the
file is opened but has not been read yet), so the first line of the first rule is always matched
immediately.

VSTK Manual 5th Edition 233 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

If the file is not completely empty, the next thing to expect to find is either a VDL or a meta
operator such as a file type restriction list (see Chapter 11). Meta operators start with either a
string or a negated (!) string, optionally followed by more strings separated by commas.
VDLs start with colon (:), followed by the VDL name, comma, optional meta operator, then
‘top or’ (see below), then ‘#’.

Once the first VDL or meta list is read, that matches the file rule, which then continues to
apply recursively. For example, if a file contained three VDLs, the file rule above would
recursively match over processing time 0, ..., 3, as follows:
file(0) = empty
file(1) = file(0) vdl = empty vdl1 file(2) = file(1) vdl = empty vdl1 vdl2 file(3) = file(2) vdl =
empty vdl1 vdl2 vdl3

he syntax description continues with the top–level (i.e. high–level) CVDL operators: OR,
XOR, AND, NOT, SIZE, and NAME (see Chapter 8):

top_or:
top_xor
top_or OR top_xor

top_xor:
top_and
top_xor XOR top_and

top_and:
top_not
top_and AND top_not

top_not:
cat
size
name

NOT top_not
(top_or)

size SIZE RELOP INTEGER
INTEGER RELOP SIZE

RELOP:
< > != == <= >=

name:
NAME “~= cat

VSTK Manual 5th Edition 234 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

The list of operators above falls through to ‘cat’ which is described below. RELOP is the list
of relational operators used in conjunction with the SIZE operator. Note that all CVDL
operators are recognized case–insensitively, so ‘AND’ may be written as ‘and’, etc.

12.2 Low–Level CVDL

The basic low–level CVDL operators are described in Chapter 6, and the text and regex
operators are described in Chapters 7 and 9:
cat:

or
cat , or

or:
code
or | code

code:
data
(cat)
@ range_expr, data
@ range_expr, (cat)
.*, data
.*, (cat)
ABS INTEGER , data
ABS INTEGER , (cat)
%f > DOUBLE
%f > - DOUBLE
~R...STRING
~R...STRING (trig_and)

range_expr:
INTEGER
INTERGER -
- INTEGER
INTEGER – INTEGER

The list of operators above depends on ‘data’ and ‘trig and’ which are described below. As an
example of parsing using the description above, ’a’, ’b’ | ’c’, ’d’ would result in the parse tree
((’a’ CAT (’b’ | ’c’)) CAT ’d’) where ‘CAT’ represents concatenation (i.e. the comma
operator).

Note that ‘range expr’, ‘.*’, and ‘ABS’ may be applied to ‘data’ or ‘(cat)’ corresponding to
the discussion of offset groups in Section 6.8.

VSTK Manual 5th Edition 235 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

12.3 CVDL Data

CVDL ‘data’ is defined in terms of several data types including byte expressions, string data,
set data, etc. as follows:
data:

byte_expr
string_data
pseudo_data
set_data
^ set_data
W0
W1
WP0
WP1
WS0
WS1
EOD
\d+
repetition_expr
fuzzy BYTE
fuzzy STRING

fuzzy:
FUZZY INTEGER
FUZZY +- INTEGER
FUZZY -+ INTEGER
FUZZY - INTEGER
FUZZY + INTEGER
FUZZY - INTEGER + INTEGER
FUZZY + INTEGER - INTEGER

repetition_expr:
byte_expr [range_expr]
string_data [range_expr]
set_data [range_expr]
^ set_data [range_expr]

byte_expr:
BYTE
^ BYTE
byte_range
^ byte_range

byte_range:
- BYTE
BYTE -
BYTE – BYTE

VSTK Manual 5th Edition 236 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

set_data:
{ set_list }

set_list:
set_item
set_list , set_item

set_item:
STRING
byte_expr
set_data
^ set_data

string_data:
STRING
~ STRING

pseudo_data:
~~ STRING
~W STRING
~# STRING
~# INTEGER STRING

12.4 Regex Trigger Data

As discussed in Section 9.2, regular expressions may include trigger data to improve run–time speed.
The syntax for regex trigger data is:
trig_and:

trig_cat
trig_and AND trig_cat

trig_cat:
trig_or
trig_cat, trig_or

trig_or:
STRING
(trig_cat)
trig_or | STRING
trig_or | (trig_cat)

12.5 Exercises

Based on some pattern matching operation which is not currently included in CVDL, design a
new CVDL operator, specify how it would fit in with the current syntax, and discuss how it
could be implemented efficiently.

VSTK Manual 5th Edition 237 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Chapter 13 Performance and Testing

The three main aspects of performance and testing are: accuracy, speed, and memory usage.
Testing for accuracy is straightforward; it requires scanning many clean and infected files to
check for false positives (hits on clean files) and false negatives (misses on infected files). If
false hits occur, the pattern or VDL must be adjusted, using techniques such as analysis of
entropy and serial correlation (Section 3.5), use of high–level AND (Section 8.1) to combine
pattern features, use of file–type specific engines (Chapter 4), or use of meta VDLs (Chapter
11).

This chapter covers issues related to speed and memory usage in performance and testing.
Sample runs are performed on a very old and slow Sun Microsystems 333 MHz Ultra 5
system running Solaris 7, using VFind-15.4.5 compiled with the cbayes engine included, and
CyberSoft VDLs version 2005-06-06-15-53-58 (13509 VDLs). It is unlikely that users
currently will have any machines this old or slow. Although absolute speed results depend on
the system processor, most results presented here will reflect relative speed improvements
which are directly applicable to any system.

Testing should be done on an unloaded system, not an active server, and timing results should
generally show that real time used is approximately equal to the sum of user and system CPU
time. For comparison and generalization of results, at least three runs should be performed for
each test, and the results averaged. The results for each run should be consistent, i.e.
approximately the same. In certain cases, generally involving scanning a large file or large
number of files, the operating system will use RAM for I/O caching, and the first run of a test
may take much longer than successive runs. In this case one can perform four runs and just
use results from the last three.

13.1 Testing Basics

This section presents some basic techniques for performance testing, and examine VFind
startup and run–time speed. VFind, like most application software, takes some time to start up
and initialize internal data structures before it actually scans any files. The startup time can be
measured by not specifying any input files on the command–line, and redirecting input from
the null device:

% cd examples/perf
% timex VFind < /dev/null |& egrep ’^(real|user|sys)’
real 2.86 user 2.18 sys 0.60
% timex VFind < /dev/null |& egrep ’^(real|user|sys)’
real 2.86 user 2.16 sys 0.65
% timex VFind < /dev/null |& egrep ’^(real|user|sys)’
real 2.85 user 2.09 sys 0.71

VSTK Manual 5th Edition 238 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

To calculate the average startup CPU time used, add together all of the user and sys times
from above and divide by 3; the result is 2.80, which is consistent with the real times shown.

To check RAM usage, run VFind interactively, suspend it at the file name prompt, then run
‘top’:

% VFind
...
Enter the name of the file to be checked: ^Z
% top
PID USERNAME THR PRI NICE SIZE RES STATE TIME CPU COMMAND
20197 perry 1 50 0 50M 50M stop 0:02 6.84% VFind

So ‘top’ shows that 50 MB of RAM is used.

As an aid for subsequent examples, the ‘3.sh’ script shown below will be used to run VFind
three times and display the run times. Using 3.sh to recheck the above example, the user
obtains just about the same average result of about 2.80 seconds CPU time:

% cat 3.sh
#! /bin/sh

(timex "$@" >/dev/null; timex "$@" >/dev/null; timex "$@" >/dev/null) 2>&1 |
nawk ’ # note timex can report hours:minutes:seconds, e.g. 1:15:23.20
BEGIN { real = user = sys = r = u = s = n = 0; }
function tconv(t) { m=split(t,a,":"); x=1; y=0;
while(m > 0) { y += x*a[m--]; x *= 60; } return y; }
$1 == "real" { r = tconv($2); real += r; ++n; }
$1 == "user" { u = tconv($2); user += u; }
$1 == "sys" { s = tconv($2); sys += s;
printf("real = %.2f, user = %.2f, sys = %.2f\n", r, u, s); }
END { printf("avg real = %.2f, cpu = %.2f\n", real/n, (user + sys)/n);
}’
% ./3.sh VFind < /dev/null
real = 2.85, user = 2.04, sys = 0.74
real = 2.90, user = 2.12, sys = 0.67
real = 2.86, user = 2.19, sys = 0.61
avg real = 2.87, cpu = 2.79

The initial startup time shown above, before scanning any files, is actually only part of the
total startup time and represents VFind reading VDL and other engine configuration files. A
further step of initialization, to compile the patterns for fast/parallel search (see Section 13.2),
is required before scanning the first file. VFind-mt, the multithreaded version of VFind, does
perform this further step right at the beginning, as can be seen by comparing the following run
to that above:

VSTK Manual 5th Edition 239 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

% VFind-mt < /dev/null |& grep Compil
##==> Compiling scan engines...
% ./3.sh VFind-mt < /dev/null
real = 14.39, user = 13.61, sys = 0.63
real = 14.28, user = 13.60, sys = 0.55
real = 14.19, user = 13.47, sys = 0.60
avg real = 14.29, cpu = 14.15

The non–multithreaded version of VFind defers the final step of initialization until just before
scanning the first file, so at least one file has to be scanned to see that:

% cat hi hi
% ./3.sh VFind hi
real = 14.37, user = 13.38, sys = 0.74
real = 14.16, user = 13.20, sys = 0.75
real = 14.23, user = 13.30, sys = 0.65
avg real = 14.25, cpu = 14 01
% ./3.sh VFind hi hi
real = 14.27, user = 13.46, sys = 0.68
real = 14.12, user = 13.27, sys = 0.71
real = 13.96, user = 13.25, sys = 0.64
avg real = 14.12, cpu = 14.00

The total startup CPU time of about 14 seconds is consistent with the VFind-mt run above.
Note that the second run above scanned the ‘hi’ file twice in about the same time as scanning
it once. So for such a small file, the VFind cpu–time is practically all startup overhead.

For scanning a number of files, the run–time will be much less if VFind is invoked just once to
scan all of the files, vs. invoking VFind separately for each file. For example, file ‘rand.dat’
contains 1,000,000 bytes of random data and is scanned once, then ten times:

% .3.sh VFind rand.dat
real = 15.56, user = 14.65, sys = 0.76
real = 15.50, user = 14.73, sys = 0.66
real = 15.61, user = 14.63, sys = 0.83
avg real = 15.56, cpu = 15.42
% ./3.sh VFind ‘perl -e ’print "rand.dat " x 10;’‘
real = 28.96, user = 27.91, sys = 0.82
real = 29.07, user = 27.94, sys = 0.83
real = 29.19, user = 27.99, sys = 0.71
avg real = 29.07, cpu = 28.73

VSTK Manual 5th Edition 240 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

If VFind was invoked once for each of ten scans of rand.dat, the total CPU time would be
10*15.42 = 154.2 seconds. But as shown above, invoking VFind once to scan rand.dat ten
times uses only 28.73 seconds. Considering the 14 second startup overhead, only 14.73 of the
28.73 seconds were used for actual scanning, yielding 1.473 seconds per scan of rand.dat.

13.2 Fast/Parallel Search

VFind uses a fast parallel search engine design, so scanning run–time is mostly independent of
the number of VDL rules. A parallel search for all patterns is always performed first, and if
that produces no matches then the patterns definitely do not appear in the data; however, if the
parallel search does match a pattern, that pattern must be rechecked individually, in a slower
serial search mode, since the parallel search does not handle options such as offsets and
regular expressions.

Only a partial set of CVDL pattern types can be handled by the fast/parallel search. It does
not handle case–insensitivity and wildcard white space, but those features are handled by the
vdlc engine as discussed in Sections 4.2 and 13.3. All other pattern strings consisting of at
least 4 characters, including offset operators, but not including sets, fuzzy, repetition, white
space, or regex operators, are handled.

By using patterns which can be included in the parallel search, run–time can be lowered
significantly. The following contrived example demonstrates this using “slow.vdl” and
“fast.vdl” files containing 1000 copies of a VDL. The slow VDL file uses patterns containing
less than 4 characters, which will not be included in the parallel search. The fast VDL file
uses patterns containing 6 characters, which will be included in the parallel search:

% head -2 slow.vdl
:abc-efg, "abc", "efg" #
:abc-efg, "abc", "efg" #
% wc -l slow.vdl
1000 slow.vdl
% head -2 fast.vdl
:abc-efg, "abcefg" #
:abc-efg, "abcefg" #
% wc -l fast.vdl
1000 fast.vdl

Using “slow.vdl” the run–time is about 30 seconds, whereas using “fast.vdl” the run–time is
less than 1 second:

% ./3.sh VFind --liboff=’*’ --vdl=slow.vdl --quiet=1 rand.dat
real = 29.58, user = 29.47, sys = 0.04
real = 30.04, user = 29.72, sys = 0.05
real = 29.85, user = 29.56, sys = 0.05
avg real = 29.82, cpu = 29.63

VSTK Manual 5th Edition 241 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

% ./3.sh VFind --liboff=’*’ --vdl=fast.vdl --quiet=1 rand.dat
real = 0.18, user = 0.15, sys = 0.00
real = 0.17, user = 0.11, sys = 0.04
real = 0.17, user = 0.13, sys = 0.03
avg real = 0.17, cpu = 0.15

In this example, using the slow VDLs, rand.dat was actually scanned 1000 times, once for
each
VDL. Using the fast VDLs, rand.dat was only scanned once. Note that there are two basic
ways to test an individual VDL: running the VDL on a large number of files, or running a
large number of copies of the VDL on a small number of files. The tests shown here use the
second method, with 1000 copies of the VDL run on one data file. In production, one should
not use multiple copies of the same VDL; that is only done for testing to make the run–time
large enough to be measured accurately. For production VDLs, the VFind -d,–dup-check
option can be used to check for duplicate VDL names and definitions (see Section 2.1).

As mentioned at the beginning of this section, when the parallel search engine detects a match,
the VDL must be run in a slower serial mode, rescanning the data, to check for an exact
match. If the data really does not match the pattern, then rescanning represents a run–time
penalty which would be beneficial to avoid. To avoid excessive rescanning, it is important
that the parallel search engine includes strings which will rarely not hit when rescanned.

The parallel search knows the difference between AND and concatenation, and will not trigger
a rescan if concatenated matches occur in the wrong order. For example, take the last 32 bytes
of rand.dat:

% od -tx1 rand.dat | tail -3
3641040 36 12 7c 73 dc 37 5d 86 9a bc 20 32 7b 4c 50 ec
3641060 12 e9 a9 ad 56 fa d2 98 25 a0 30 3c 8b 4b 39 f1
3641100
and consider VDLs which specify those bytes with the last 16 bytes first:
% cat s2.vdl
:vand,
"\x12\xe9\xa9\xad\x56\xfa\xd2\x98\x25\xa0\x30\x3c\x8b\x4b\x39\xf1" AND
"\x36\x12\x7c\x73\xdc\x37\x5d\x86\x9a\xbc\x20\x32\x7b\x4c\x50\xec" AND
size == 1234 #
% cat f2.vdl
:vcat, "\x12\xe9\xa9\xad\x56\xfa\xd2\x98\x25\xa0\x30\x3c\x8b\x4b\x39\xf1",
"\x36\x12\x7c\x73\xdc\x37\x5d\x86\x9a\xbc\x20\x32\x7b\x4c\x50\xec" AND
size == 1234 #

VSTK Manual 5th Edition 242 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Each VDL has a “size” operator included simply to force it to not match. VDL “vand” in file
s2.vdl uses AND for the two 16–byte patterns; that part of the VDL will match in the parallel
search, causing the data to be rescanned. But VDL “vcat” in file f2.vdl uses concatenation (,)
of the patterns, and since they are in the wrong order, they will not match in the parallel
search, and the data will not be rescanned.

The performance of the VDLs above is tested using file “slow2.vdl” containing 1000 copies of
VDL vand, and file “fast2.vdl” containing 1000 copies of VDL vcat:

% ./3.sh VFind --liboff=’*’ --vdl=slow2.vdl --quiet=1 rand.dat
real = 59.14, user = 58.91, sys = 0.06
real = 59.11, user = 58.92, sys = 0.05
real = 59.11, user = 58.89, sys = 0.07
avg real = 59.12, cpu = 58.97
% ./3.sh VFind --liboff=’*’ --vdl=fast2.vdl --quiet=1 rand.dat
real = 0.21, user = 0.13, sys = 0.06
real = 0.20, user = 0.18, sys = 0.02
real = 0.20, user = 0.15, sys = 0.05
avg real = 0.20, cpu = 0.20

Using “fast2.vdl” the run–time is almost zero, whereas using “slow2.vdl” the run–time is close
to 1 minute, since the parallel search triggers 1000 rescans of the data.

In cases where triggering of rescans by the parallel search is unavoidable, one should at least
try to make the rescan as fast as possible. One way to do that in patterns which use the AND
or OR operators is to put the fastest operations first. CVDL AND and OR operators use
short–circuit evaluation, similar to the logical && and || operators in the C programming
language. That is, if the left side of an AND is false, the right side is not evaluated. And if the
left side of an OR is true, the right side is not evaluated.

For example, VDL vand from “s2.vdl” above uses a size operator as the last part of the VDL.
The size operator is fast since it just checks the file size and does not scan any data. Thus, the
VDL should run faster in a rescan if the size operator is specified first. VDL “vand-b” in file
s2b.vdl is the same as VDL vand except for listing the size operator first instead of last:

% cat s2b.vdl
:vand-b,
size == 1234
AND "\x12\xe9\xa9\xad\x56\xfa\xd2\x98\x25\xa0\x30\x3c\x8b\x4b\x39\xf1"
AND "\x36\x12\x7c\x73\xdc\x37\x5d\x86\x9a\xbc\x20\x32\x7b\x4c\x50\xec"#

VSTK Manual 5th Edition 243 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

File “slow2b.vdl” contains 1000 copies of VDL vand-b, and its performance is about the same
as “fast2.vdl”:
% ./3.sh VFind --liboff=’*’ --vdl=slow2b.vdl --quiet=1 rand.dat
real = 0.21, user = 0.14, sys = 0.05
real = 0.20, user = 0.15, sys = 0.04
real = 0.20, user = 0.13, sys = 0.07
avg real = 0.20, cpu = 0.19

13.3 Case–Insensitive Fast/Parallel Search

As discussed in Section 4.2, although the VDL parallel search engine does not handle case–
insensitivity and wildcard white space, a separate vdlc parallel search engine is provided to
perform fast scanning for VDLs consisting mostly of those types of patterns.

To illustrate the performance gain using the vdlc engine, a set of case–insensitive word pattern
VDLs were first created from the online /usr/dict/words dictionary:

% cat mkwords.sh
#!/bin/sh
#
make case-insensitive word VDLs
run < /usr/dict/words > words.vdl grep ’^.............*’ | # at least 12 letters sed -e
"s/.*/:&,~\"&\"#/"
% ./mkwords.sh < /usr/dict/words > words.vdl
% wc -l words.vdl
1064 words.vdl
% head -3 words.vdl
:abovementioned,~"abovementioned"#
:absentminded,~"absentminded"#
:accelerometer,~"accelerometer"#
% tail -3 words.vdl
:wholehearted,~"wholehearted"#
:Williamsburg,~"Williamsburg"#
:Winnipesaukee,~"Winnipesaukee"#

Now compare performance between the vdl and vdlc engines using these VDLs:

%./3.sh vfind –liboff='*' --vdl=words.vdl –quiet=1 rand.dat
real = 55.75, user = 55.57, sys = 0.04
real = 54.73, user = 54.56, sys = 0.05
real = 54.71, user = 54.52, sys = 0.06
avg real = 55.06, cpu = 54.93

VSTK Manual 5th Edition 244 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

% ./3.sh vfind --liboff=’*’ --vdlc=words.vdl --quiet=1 rand.dat
real = 0.33, user = 0.26, sys = 0.06
real = 0.32, user = 0.28, sys = 0.04
real = 0.32, user = 0.23, sys = 0.08
avg real = 0.32, cpu = 0.32

Using –vdl= to load the VDLs, none can be handled by the parallel search engine, so all are
run in the slower serial mode, and the run–time is almost 1 minute. But using –vdlc= to load
the VDLs, all are handled by the case–insensitive parallel search, so none are run in the slower
serial mode, and the run–time is less than 1 second.

13.4 Exercises

1. Collect a set of 100 clean files of various types for use in performance testing. Include
some Files of each of the following types: MS/EXE, OLE, text, and unknown (e.g. random or
encrypted data). Put the file names in a ‘100.list’ file. Run VFind with input redirected from
100.list and the –sst,–smart-scan-types option to check that it is correctly detecting the file
types and not producing false hits on the collection.
2. Extract a set of 100 VDLs from the current CyberSoft VDL distribution exe, ole, scanall,
other, and text VDL files. Put the set into a file ‘100.vdl’, being careful to set the same file–
type restrictions for each type of VDL in each section. Run VFind using only this set of
VDLs on a collection of clean files to check for any problems.
3. Concatenate 100.list with itself to produce file ‘200.list’; concatenate that with itself to
produce ‘400.list’; etc. up to ‘3200.list’. Similarly, use concatenation starting with 100.vdl to
produce VDL files‘200.vdl’, ‘400.vdl’, etc. up to ‘3200.vdl’. These files will be used in
subsequent exercises for performance testing.
4. For each of the VDL files from the previous exercise, measure the performance of VFind
for each of the set of list files. Produce tables and a plot of the results.
5. Assume that VFind scan time can be modeled as:
i.t = tpNp + tfNf(13.1) where tp and tf are CPU time per pattern (VDL) and per file scanned
respectively, Np is the number of patterns, and Nf is the number of files. Using results from
the previous exercise, determine linear least–square–error estimates of tp and tf .

VSTK Manual 5th Edition 245 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Lexical Analysis Using VFind
And the CVDL Language

By
Barbara Lynn Higgins

With forward by:
Peter V. Radatti

The Leader In Total Security Solutions
For Linux, UNIX and Mac OS X

© Copyright M a y 2017 CyberSoft, Inc. All rights reserved.

VSTK Manual 5th Edition 246 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

WARNING: This section of the manual contains language that some may find objectionable. This
language is necessary as examples of how to detect this type of language.

REASONING: This section of the manual is included not because CyberSoft believes that
customers are interested in unsolicited bulk email analysis, but because it is a real world example
of complex lexical analysis. This manual was developed by CyberSoft's real world work with
customers reducing hostile email messages utilizing the Safe Internet Email software product.
The VDLs were used not only to identify hostile messages but to populate a collection of hostile
messages that VFind could then utilize with it's Bayes Engine. This provided the ability to stop
messages both directly through pattern analysis and indirectly, statistically using Bayes.

Outline Of Chapters

VSTK Manual 5th Edition 247 of 343

Chapter One: The Basics
VDL Format
Characters Used to Create VDLs
Macros

Using Email and IP Addresses in Headers
Using Email Addresses in the Body

Chapter Four:Spelling, Grammer, and Other Tricks
Spammer Spelling
Spammer Grammar
Other Spammer Tricks
Attachments
SpamTable VDLS
Chapter Five: Creating and Using Macros

Chapter Seven: Scam Spam
TABLE 1: MACROS--HEAD. VDL
TABLE 2: MACROS--PORN-HARASS. VDL

Introduction by Peter Radatti, President of CyberSoft, Inc.

Chapter Two: Creating Simple VDLS: URLs, Email, and Headers
Using Urls

Chapter Three: Key Words and Phrases

Chapter Six: Foreign Language Spam

VSTK Manual 5th Edition CyberSoft Operating Corporation

Foreword by Peter V. Radatti
June 2009

I had been involved in lexical analysis for many years when I designed the VFind tool and the
CVDL language. From the beginning the CVDL language was designed to be both specific to
detecting hostile software in binary and source forms and to detection of words or phases in
human language. This is because I was involved in many projects where the goals were to
detect “dirty words”. In this context “dirty words” was not something that a lover might
whisper to you but proscribed words that indicated that protected information was contained
within the document. At that time I was concerned with both detecting documents that were
not permitted to be exported outside of an organization either by accident or as unauthorized
and deliberate export. The unauthorized export I assumed used various methods of hiding the
fact that the document contained proscribed data. All of this was before the Internet.

When the Internet became popular and unsolicited bulk email (UBE) became popular there
was a natural link between my interest in lexical analysis and UBE. The authors of UBE were
trying with great success to hide the fact that their messages were UBE while still delivering
the “payload” to the intended target in a human readable way. This was just what I had
designed the CVDL language to do. CyberSoft started to experiment with detection of UBE
along with virus content in the same VFind tool. Mixing the data had no effect on the tool and
allowed us to accomplish more than one task at the same time.

After a couple of years of research CyberSoft concluded that not only was the VFind CVDL
language good for detecting all forms of software attacks but was also a great “dirty word”
detector, UBE detector and a fine all around general purpose pattern analysis program.
Contained herein is a document written by CyberSoft’s Senior Data/Virus Analyst at that time,
Barbara Lynn Higgins, describing how she was able to use VFind’s CVDL to detect UBE. It
is very interesting to read and also gives you a greater idea of some of the other lexical
problems that can be solved with these tools.

Thank you,
Peter V. Radatti
CyberSoft Operating Corporation
Chairman / Founder

VSTK Manual 5th Edition 248 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Chapter One: The Basics

VDL Format

A “VDL” (short for “CVDL”, or CyberSoft Virus Definition Language) is a signature taken
from the source that is used by VFind to detect any matches containing the enclosed string of
data. It is comprised of a name, the data string, and a terminus character, as seen below:

:SPAMVDL G 01111,“string data”#

The colon at the extreme left margin indicates the beginning of a new signature.

The name SPAMVDL is common across all spam vdlsets and is added by VFind once the
signature is completed.

The letter following the name indicates in which vdlset the signature will reside. The vdlset
names are as follows:

VSTK Manual 5th Edition 249 of 343

B Business

C Contest lotteries, sweepstakes, online contests
E Community

R Credit

L Gambling online poker, slots, casino, gambling
G General

H Harassment

M Medical

F Offers

P Pornography adult sites, sexual services and merchandise

T Technology

U Unsubscribe unique unsubscribe language or websites

X Scams

business services or products, domain
hosting, e-marketing

dating websites, non-porn socialization
offers
credit cards, mortgages, loans, refinancing,
debt consolidation

foreign language emails, misspelled
spammer words, etc.
profanity, obscene/offensive language and
descriptions, depraved offers
online pharmacies, discount drugs, weight
loss offers, sexual treatments
free/discounted items and services, replica
merchandise, financial deals

illegal software, discounted hardware,
cable/satellite services/equipment

phishing for personal information, overseas
money gambits

VSTK Manual 5th Edition CyberSoft Operating Corporation

The number after the vdlset letter is sequential from the last VDL number in the associated
vdlset, which in this case would be 01110, and will be added by VFind once the signature is
completed.

The comma separates the name of the VDL from the actual data taken from the spam itself.
The only part of the VDL that is displayed in SIE is the name. If the comma is absent, the
entire VDL will be displayed. The comma also serves to separate one or more data strings
from each other and from macros and functions.

The quotes enclose the data taken from the spam email. This is the information VFind needs
to find the data indicating an email qualifies as spam. There can be several data strings in a
single VDL as long as other conditions of the CVDL language are met.

The hash mark at the end indicates to VFind that it should stop scanning for data and report
any spam detections caused by that VDL.

CVDL Operators Used to Create Lexical VDLs

Apart from the operators introduced above, there are several other commonly used operators
that have very specific meanings within the VDL context.

~ (tilde) : used in front of a data string, it indicates case-insensitivity.

~~ (double tilde) : used in front of a data string, it indicates case, punctuation, return, and
whitespace insensitivity. Usually used for phone numbers or wrapped text.

$macro : used in front of a word to indicate a macro, or pre-defined action.

,.*, (comma-dot) : skips over data in a line until the next data string is found. Only used on a
star-comma single line—does not wrap.

@-xxdata (jump) : used between data strings to indicate maximum distance to jump until next
data string can be located. Not influenced by any characters or formatting.

() (exclusive) : used around a data string to indicate that the string should be read as a unit.
Often used with all NOT, OR , or AND functions

| (low level or) : used between data strings to indicate “this or that”. Cannot be used to
indicate “this and/or that”. Data must be positioned sequentially in the VDL as they would
appear in the source.

& (low level and) : used between data strings to indicate “this and that”. Data string
must be positioned sequentially in the VDL as they would appear in the source.

VSTK Manual 5th Edition 250 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

OR (high level or) : used between data strings to indicate “this or that”. Data strings do
not need to be positioned sequentially—they may be positioned in the source either before or
after other data strings in the VDL.

AND (high level and) : used between data strings to indicate “this and that”. Data strings do
not need to be positioned sequentially—they may be positioned in the source either before or
after other data strings in the VDL.

NOT (not) : used with data strings to indicate that a VDL may detect a string of data in certain
files but not in others, or may indicate a particular word spelling which is not to be detected.
Used with AND.

{“ ”} (set1) : indicates a set of data which is to be scanned together.

{'X'-'Y'} (set2) : indicates a range of data which is to be scanned at one time.

< > (limitations) : limits range where VFind can scan.

[] (range) : indicates number of times a data string or macro should be repeated.

W1 (whitespace) : indicates one or more whitespaces between or after data strings.

WP1 (whitespace&punct) : indicates one or more whitespaces or punctuation marks between
or after data strings.

VSTK Manual 5th Edition 251 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Macros

Macros are a “shortcut” for VFind that enables it to load a given string of information once
and then apply it over and over again without having to reload. Several macros used in the
creation of spam VDLs are used frequently enough to merit their inclusion here.

VSTK Manual 5th Edition 252 of 343

$DOM1, domain

$DOM3, domain3

$website website

$subject, subject line

$punct

$nspo punctuation

$d numbers

$a letters

$r

$letter letter groups

$punc letter

stands in for “http://”, “https://”, “@”(as used in emails), and “.”,
as used in domain names.
stands in for “.com”,”.org”,”net”, and other domain enders,
including countries (“.tw”, “.uk”, etc.)
stands in for $DOM1, jump, $DOM3, whitespace or
punctuation
indicated the subject line of an email with its attendant
punctuation.

punctuation
/whitespace

stands in for all punctuation marks and white spaces. Usually
used with range operator
stands in for all punctuation marks only—means “no spaces,
punctuation only”
represents all single-digit numerical characters. Frequently
used with range operator for longer numerical sequences.
represents all single upper and lower case text letter
characters. Frequently used with range operator for longer
strings

letters &
numbers

represents all single upper and lower case text letter
characters and all single-digit numerical characters
represents a set of upper and lower case letter characters
belonging to a single letter group
represents a set of non-text characters used to imitate certain
letters.

VSTK Manual 5th Edition CyberSoft Operating Corporation

Chapter Two: Creating Simple VDLS: URLs, Email, and Headers

Using Urls

The easiest way to detect spam is to use the url usually supplied by the spammer. The term
“usually” is used because one of the spammer's tricks is to hide a url in an image or to obscure
it in some other fashion. Here are some examples of how to write a VDL using a url.

It is not necessary to use the entire url. Indeed, the urls can, and do, change slightly each time
a new wave of spam is sent out. As can be seen in the examples below, the first part of the url
is in constant flux.

<TD><SPAN=20
<TD><SPAN =
<TD><SPAN =
<TD><SPAN=20
<TD><SPAN=20
<TD><SPAN =

The first section after “http://” is randomly generated each time a new email is sent out. It can
be composed of a word, a string of random numbers and/or letters, or can even be another
website, complete with .com, .net, etc. Ignore this section. Use only the last
word/characterset that ends with the domain suffix. The trailing “/” may be included to
indicate that this url is part of a larger url and is not a standalone, as it could be on legitimate
email correspondence. Therefore, the VDL should look like this:

<TD><SPAN =
T,$DOM1,~”hundertsoft.com/”#

OR T,$DOM1,~”hundertsoft.com”#
OR T,$DOM1,~”hundertsoft.com”,WP1#

where the macro $DOM1 stands in for the “http://” segment, because otherwise VFind would
read the colon as the beginning of another VDL instead of a component in the url. Using
$DOM1 before the domain name enables the detection of the url without any “http://”, since it
also looks for the period which immediately precedes the url (“www.Zhao.hundertsoft.com/).
If the trailing forward slash is also eliminated, $DOM1 will also detect the domain name in an
email address (“info@hundertsoft.com”).

Another approach is to look for a key word in the url, especially if it is misspelled. Note the
use of the same-line jump to avoid unnecessary data in the VDL. The $website macro is used
instead of $DOM1 because the domain name is not unique to this email.

VSTK Manual 5th Edition 253 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

http://uk.geocities.com/julpetismee/?s3=Np.Largest.pharmancy,reduced_prices

M,$website,.*,~”pharmancy”#
OR M,$website,@-15,”/?”,@-15,~”pharmancy”#

The second version would be used if the url wraps around a line, since the “.*,” feature only
works on the same line. It could also be used if there is an intervening string of data in the
VDL. The “dot-star” feature is more costly for VFind to use than a simple limited jump
because it utilizes more resources and can slow down scan times if overused.

Yet another approach is to use a key name or phrase that accompanies the domain name. In
this url, the number salad at the end will change with each sending, so don't use it.

http://uk.geocities.com/f_w_Lancaster/?q=G2P5lf8iYc45LSb72
M,$website,~”f_w_Lancaster/?”#

Note the use in all the preceding VDLs of the “tilde” function in front of the data string. This
enables VFind to detect the data string whether it is typed in upper or lower case characters.
Also note that when using the “$website” macro, the preceding punctuation of the data string
is omitted because it is already a delineating feature at the end of this macro. Also, the “/?”
feature is interesting to include since this is not often found in a url and serves to set this VDL
apart from others.

Sometimes a url can be found only within the HTML portion of the email. When analyzing an
email in a text editor, the body of the email will be in the top half and the HTML will be in the
bottom half. Here is an example of a url which has been hidden in the HTML of the email.
The “text” part of the email was a collection of quotes, book passages, and whatever else the
spammer felt like throwing in there to foil the antispam watchdogs.

M,$DOM1,~"fallurpos.com"#

When looking through HTML for the url, don't confuse a url which is listed simply because it
is related to a graphic. Check all urls in this section to make sure that the url to be used is for
the spammer's website. Some graphics are taken from graphics-only websites for use in the
email, so they may end up being blocked if their domain name in the VDL. Here is an
example of a graphic-bearing spam email:

 border versus

In this next example, the urls were the same since the spammer website was hosting the
graphic, but this is not always the case.

VSTK Manual 5th Edition 254 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

<img src="http://www.ecobusiness.edu/mailing/pics/spacer.gif"
width="15"height="20"></td><tdheight="1" bgcolor="#FFFFFF" width="547">

B,$DOM1,~”ecobusiness.Edu/”#

Some domain names change with each new wave. Fortunately, CVDL can handle this with
relative ease. As long as there is a common string in the domain name, the fluctuating string
can be “finessed” with the use of a macro or two. As can be seen from the two examples, the
base domain name string is the same in both urls, but the prefixes change.

<a href="http://www.tqrefi.net/?id=p11
R,$DOM1,$lclet[2-3],~”refi.net/”#

<a href="http://www.f18refi.net/?id=y86"
R,$DOM1,$r[2-3],~”refi.net/”#

In the first example, the macro for “lower-case letters” was used, and VFind was instructed to
allow for 2 to 3 lower case letters preceding “refi.net”. This provides some flexibility in
detection, in case the spammer decides to add another letter at a later time. This VDL will still
detect it.

In the second example, the macro is even more flexible than the one in the first VDL. In this
case, the macro used is for “random upper- and lower-case letters and numbers 0-9”.
Therefore, any combination of three upper-case or lower-case letters and numbers can be
inserted into this domain name and the VDL will still detect it.

Sometimes it isn't the domain name itself that is important but, rather, the data strings that
follow it. Oftentimes the domain name will change with each spam wave, but the directional
strings after it will remain the same.

From:
href="http://paypal.com.login-user2992.info/webscr.php?
cmd=LogIn">https://www.paypal.com/cgi-bin/webscr.php?cmd=LogIn

To: href="http://paypal.com.magicman.info/webscr.php?
cmd=LogIn">https://www.paypal.com/cgi-bin/webscr.php?cmd=LogIn

So the VDL may come out looking like this:

X,$DOM1,~”paypal.com ”,@-15,~”.info/webscr.php?cmd=LogIn”#

VSTK Manual 5th Edition 255 of 343

http://www.tqrefi.net/?id=p11

VSTK Manual 5th Edition CyberSoft Operating Corporation

Be careful to make a VDL out of the bogus url, so pay attention to the redirects. In this case,
the bogus url is first and points to the second, possibly legitimate url which is being
displayed. Remember, if there are two urls with a carrot (“>” or “<”) between them, use the
url on the open side of the carrot, or just look for “a href=”, which is the HTML code that
hides the real url.

Here are good examples of picking a data string carefully. This url contains two domains, but
only one is the spammer's. If the trail is followed, it can be seen that the “rds.yahoo.com”
would not be optimal for the purpose of creating a VDL, and the “dwo.com” is a red herring,
but the “grang3.net” is prime material.

Go <A HREF="http://rds.yahoo.com/S=7100390/K=computer/v=7/SID=j/l=WS1/R=1/
SS=87757020/IPC=us/SHE=0/H=0/SIG=8321evjJN604/EXP=039612748/*-
http://dwo.com.grang3.net/ finish.asp">HERE to make that change. <P><P>

As such, the VDL should look like this:

T,$DOM1,~”grang3.net”#

Other parts of this structure can be used for urls as well, just in case the spammer url changes
in some way but the rest of the structure is identical from email to email.

Go <A HREF="http://rds.yahoo.com/S=7100390/K=computer/v=7/SID=j/l=WS1/R=1/
SS=87757020/IPC=us/SHE=0/H=0/SIG=8321evjJN604/EXP=039612748/*-
http://dwo.com.grang3.net/ finish.asp">HERE to make that change. <P><P>

T,~”Go <A HREF=",$DOM1,~“yahoo.com/”,@-20,~“computer/”,@-200,$website,
@-100,~“>HERE to make that change.<”#

Please note that anytime a quotation mark is inside a url string, it will have to be “jumped” or
escaped, or VFind will think that it signals the end of the string, and it will get a parse error
report when it tries to post. Again, more discussion of this later.

Sometimes the url redirect isn't as obvious as it is in the last example. Here is a sample of a
redirect that is covert and could be easily missed,

href=3D"http://www.norada.ch/shop/catalog/redirect.php?action=3Durl&g=oto=3D
www.norada.ch/shop/catalog/redirect.php%3faction=3Durl%26goto=3Dnexte=rmest
%252ecom">see =

Here there are two redirects, the first two being the same url and the third being the “real” url
that should be used for the VDL. So the VDL could be written like this:

VSTK Manual 5th Edition 256 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

F$DOM1,~“norada.ch/”,@-100,~~“nextermest”,“\x25\x2e”,“com”#
OR F,$DOM1,~“norada.ch/”,@-100,~~“nextermest”,“%.com”#
OR F,$DOM1,@-100,~~“nextermest”,“\x25\x2e”,“com”#
OR F,$DOM1,@-100,~~“nextermest”,“%.com”#
OR F,“goto”,“\x3D”,~~“nextermest”,“\x25\x2e”,“com”#
OR F,“goto”,“\x3D”,~~“nextermest”, “%.com”#

Since the domain name “nextermest%252ecom” is line-wrapped, the extra spacing has to be
allowed for by using the double-tilde function, but only on the part of the domain name which
wraps because the rest of the name contains hex code for “%.” If the double-tilde function is
used on the entire name, it would ignore the “%.” in the name because it is punctuation
insensitive. Therefore, it is best to split off the wrapped section from the rest. As for the
“%.”, either the CVDL hex for the characters can be used, or if possible, turn them into text
characters. VFind will treat both forms the same. However, the hex code should be retained
if the characters are non-text or non-printing characters. Some urls don't exist as domain
names but as IP addresses. These can be commonly found in scam spam, especially the
infamous “eBay” and “PayPal” scams. In this case, the job is easy; just pick out the IP
address and any attendant text that is relevant.

 G, $DOM1,“220.130.129.235”#

Using Email and IP Addresses in Headers

Before attacking the use of email addresses in VDLs, it is best to introduce email headers,
since this is where many of them lurk and it must be known which ones are reliable and which
ones are nonsense. Since this manual has already touched upon using IP addresses in VDLs,
this is an opportune moment to show the various ups and downs of spam email headers.

This is the header of a spam email as received from the original spammer. All redirects, i.e.
“received: from” lines, should be read from bottom to top, the top being the most recent
redirect to the recipient. The farther down the list, the closer to the spammer.

VSTK Manual 5th Edition 257 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Received: (from uucp@localhost)
by egate.cyber.com (8.11.7/8.11.7) id j6M8YAG06381
for meg@egate.internal.cyber.com; Fri, 22 Jul 2005 04:34:10 -0400 (EDT)

>Received: from mh1.safeinternetemail.com (mh1.safeinternetemail.com [207.8.185.17])
by mhub1.cyber.com (8.11.4/8.11.4) with ESMTP id j6M9fin12087
for <meg@egate.internal.cyber.com>; Fri, 22 Jul 2005 05:41:44 -0400 (EDT) X-anti-
virus-Scanned: anti-virus scanned by SIE - http://safeinternetemail.com/

Received: from p6018-ipad01niho.hiroshima.ocn.ne.jp (p6018-
ipad01niho.Hiroshima.ocn.ne.jp [61.214.95.18])

by mh1.safeinternetemail.com (8.13.1p1/8.13.1) with SMTP id Aj6M8WZcr026932
for <meg@cyber.com>; Fri, 22 Jul 2005 04:32:38 -0400

Received: from [159.33.141.98] (port=4578 helo=[Valparaiso])
by p6018-ipad01niho.hiroshima.ocn.ne.jp with esmtp
id 9900146789wringer7142

(Authid: EveretteDumas)
for meg@cyber.com; Fri, 22 Jul 2005 17:32:38 +0900

Message-ID: <4.30.5904061749510.15353-100000@hiroshimamonamour.net>
To: meg@cybersoft.com
Date: Thu, 25 Aug 2005 15:55:39 -0100
From: "Mauro Egan" <scnujtokisic@kewl.com>
Subject: Get It NOW!!!!!

It can be seen that, by following the path downward, that “159.33.141.98” is the spammer's
machine or the one they are using to obscure their own identity. The IP address is in brackets
because it is a reverse DNS lookup that was done by the first email intermediary. Note that
there is no domain name with which to identify the spammer, but IP address may be used in
the VDL if it clears a reverse DNS lookup; that is, that it is not part of a legitimate network
somewhere. This spammer could have used a forged or “spoofed” address to cover their trail.
When in doubt, follow the time stamps back in time to the earliest point and do a lookup on
that IP.

One should always pay attention to the time stamps as these can give information about the
spammer's route. As can be seen in the example below, the time stamps are radically different
between the original sender and the recipient's server, but are still in keeping with the
changing time zones (in italics). Since there are three hours between these time zones and the
difference between the time stamps is within 20 minutes of 3 hours, the times are probably not
accurate. However, this is no guarantee that the header information is not bogus.

Received: from 61.111.231.34 ([61.111.231.34])
by mh1.safeinternetemail.com (8.13.1p1/8.13.1) with SMTP id Aj7LJEvpr022867
for <megan@cyber.com>; Sun, 21 Aug 2005 15:14:59 -0400<---------

Received: from 80.160.32.236 by ; Sun, 21 Aug 2005 12:09:41 -0700<--------

Now here is the header of a spam email that has been spoofed. As the redirects are followed
backward in time, it can be seen that the redirects do not flow properly.

VSTK Manual 5th Edition 258 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Any break in the continuity of the redirects is a dead giveaway that the domain names have
been spoofed. However, the IP address next to “25-A” is a reverse DNS lookup, which is
accurate as far as it goes, but may not belong to the spammer. Also, the “helo” is not a valid
address and is therefore useless for the purpose of creating a VDL, as are identifiers like
“unknown”. One could try using something like “(HELO Jonnie)”, since it is a little more
specific, but make sure to keep it case sensitive.

Received: (from uucp@localhost)
by egate.cyber.com (8.11.7/8.11.7) id j7U2uAJ23997
for meg@egate.internal.cyber.com; Mon, 29 Aug 2005 22:56:10 -0400 (EDT)

>Received: from mh1.safeinternetemail.com (mh1.safeinternetemail.com [207.8.185.17])
by mhub1.cyber.com (8.11.4/8.11.4) with ESMTP id j7U2tnO07193
for <meg@egate.internal.cyber.com>; Mon, 29 Aug 2005 22:55:49 -0400 (EDT)

Received: from 25-A ([211.168.37.35])
by mh1.safeinternetemail.com (8.13.1p1/8.13.1) with SMTP id Aj7U2s6Qr031215
for <meg@cyber.com>; Mon, 29 Aug 2005 22:54:08 -0400

Received: from (helo=abstention)
by abide.dattaweb.com with asmtp (Exim 4.99)
id 1Cn4Tf-0789Vk-43
for Mccabe6Bradley@masterfox.com.sg; Mon, 29 Aug 2005 21:52:04 -0600

Date: Mon, 29 Aug 2005 19:54:04 -0800

This email also contains a false identity, a sure sign of a spammer. This may be used in a
pinch, since sometimes these false identities are used again, but usually this is a very short-
term fix. Instead of the “(helo=abstention)” identity, some spammers will use a common
domain name to hide their identities, such as:

Received: from excite.com ([221.139.219.175])

Again, here the IP address in brackets is correct, but the spammer probably has nothing to do
with excite.com, since the domain is missing any prefixes that might identify an individual,
such as “spammonger.excite.com”. Use the IP address only if it checks out as belonging to a
spammer, not just to “excite.com” or another innocent party.

Sometimes an obviously false address may be used to detect spam. If a header is examined
something to this effect can be seen:

Received: from autogamous (192.168.134.14) by gevoel.net (Femoral se 1.12) with SMTP id
NgpgFY-WVWLMt-nS for <help@cyber.com>; Wed, 19 Oct 2005 02:38:37 -0500

This could actually be used to create a VDL. For one thing, it doesn't implicate any innocent
computers by using a “.com” or “.net”, etc. For another, certain spammers use certain
“names” like this on different emails. Time to catch several birds with one stone, as they say.
So, the VDL would look something like this:

VSTK Manual 5th Edition 259 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

M,$from,~"autogamous ("#

where the macro “$recd” covers “(newline) Received: from ”, the word “autogamous” can be
made case- insensitive to cover all bases, and the requisite space and “opening parenthesis” of
the accompanying IP address (which is omitted because it is probably faked) to eliminate the
presence of other words following “autogamous”, such as “.com”, “.net”, etc.

When an email has been forwarded from the original recipient to another recipient, the long
headers at the top will only reflect the forwarding address and intermediate servers, not the
point of origin of the original spam document. Moving past these initial headers and looking
for a secondary or, in some cases, even a tertiary set of headers below them will be necessary.
Here is a wonderful example of the perils of forwarding to the lexical analyst:

From tycobb@aurelius.com Tue Aug 30 08:03:40 2005
Return-Path: <tycobb@aurelius.com >
Received: (from uucp@localhost)

by egate.cyber.com (8.11.7/8.11.7) id j7UC5Ar00409
for support@egate.internal.cyber.com; Tue, 30 Aug 2005 08:05:10 -0400 (EDT)

>Received: from mh1.safeinternetemail.com (mh1.safeinternetemail.com [217.8.105.17])
by mhub1.cyber.com (8.11.4/8.11.4) with ESMTP id j7UC4rO08171
for <support@egate.internal.cyber.com>; Tue, 30 Aug 2005 08:04:53 -0400 (EDT)

X-anti-virus-Scanned: anti-virus scanned by SIE - http://safeinternetemail.com/
Received: from allmaster.aurelius.com (allmaster.aurelius.com [218.34.129.18])

by mh1.safeinternetemail.com (8.13.1p1/8.13.1) with ESMTP id Aj7UC3fkC023476
for <jobs@cyber.com>; Tue, 30 Aug 2005 08:03:42 -0400

Received: from babylon.aurelius.com (caesar.aurelius.com [218.34.129.68])
by allmaster.aurelius.com (8.12.1/8.12.1) with ESMTP id

Subject: [Fwd: FW: Greets! I offer you VIAGGRRAAA!!! From: "Ty Cobb"
<tycobb@aurelius.com>
To: jobs@cyber.com
Organization: Aurelius Realty
Date: Tue, 30 Aug 2005 07:03:40 -0500
Message-Id: <1125403420.7865.36.nile@casear.aurelius.com>
Mime-Version: 1.0
X-Mailer: Evolution 2.0.4-3mdk
Content-Type: multipart/mixed;
boundary="=-c3o6LifOhWQmjK67Ec"

VSTK Manual 5th Edition 260 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

End of most recent forward header

--=-c3o6LifOhWQmjK67EcbX
Content-Type: text/plain
Content-Transfer-Encoding: 7bit

--=-c3o6LifOhWQmjK67EcbX
Content-Disposition: inline
Content-Description: Forwarded message - FW: Greets! I offer you VIAGGRRAAA!!!
Content-Type: message/rfc822

Return-Path: <duncanmcleod@aurelius.com>
X-Sieve: cmu-sieve 2.0
Received: from ceotpc (cpe-166-68-220-42.austin.res.rr.com [166.68.220.42]) (authenticated
bits=0)

by allmaster.aurelius.com (8.12.1/8.12.1) with ESMTP id j7UBQ2vr017472
for <tycobb@aurelius.com>; Tue, 30 Aug 2005 06:26:06 -0500

Message-Id: <200508301126.j7UBQ2vr017472@allmaster.aurelius.com>
From: "Duncan McLeod"<duncanmcleod@aurelius.com>
To: "'Ty Cobb'" <tycobb@aurelius.com>
Date: Tue, 30 Aug 2005 06:26:04 -0500
MIME-Version: 1.0
Content-Type: text/plain; charset="iso-8859-1"
Get rid of this garbage, please!
Thanks – Dunc

End of original forward headers

-----Original Message-----
From: copyright@yahoo-inc.com [mailto:copyright@yahoo-inc.com]
Sent: Tuesday, August 30, 2005 2:11 AM
To: pr@aurelius.com
Subject: Greets! I offer you VIAGGRRAAA!!!

Hi, Duncie! How's it hangin”?;)
Does your baby wanna play all day?;P

As the above example shows, it can be rather confusing to find the relevant information
amidst all this information. When the original spam email is finally found, all the information
needed about the mail redirects are usually stripped away by the forwarding process.
Therefore, other information available will have to be used, limited as it is.

First, a VDL can be created for the email address. It is certainly not a valid one for yahoo.

VSTK Manual 5th Edition 261 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

From: copyright@yahoo-inc.com [mailto:copyright@yahoo-inc.com]
M,$from,.*,~”copyright@yahoo-inc.com”#

Second, a VDL can be created for the elements of the subject line.

Subject: Greets! I offer you VIAGGRRAAA!!!

M,$subject,.*,“Greets!”#
OR M,~“Viaggrraaa!!!”#
OR M,NOT ~“viagra” AND ({"Vv"}[1-3],{"Ii"}[1-3]
{"Aa"}[1-3],{"Gg"}[1-3],{"Rr"}[1-3],{"Aa"}
[1-3]),WP1#
M,~”Hi,“,@-15,”! How's it hangin”?;)”,@-3,
~”Does your baby wanna play all day? ;D”

Based on unusual use of the greeting, based on unusual spelling of the drug, using the
exclusion feature and repeating letters to catch all spelling variants, OR using unusual
phrasing & emoticons to catch repeat emails with different websites.

The actual creation of VDLs based on lexical data will be addressed later on in this manual. A
new feature has been added by some ISPs to try to identify spammers. It's an optional feature
(anything in an email header which is preceded by an “X” is an option and may be subject to
outside manipulation) that identifies the IP of origin of the email.

From rzitgiskrs@rocketmail.com Sat Jul 23 16:41:09 2005
Return-Path: rzitgiskrs@rocketmail.com
Received: (from uucp@localhost)

by egate.cyber.com (8.11.7/8.11.7) id j6NJiAk07244
for megan@egate.internal.cyber.com; Sat, 23 Jul 2005 15:44:10 -0400 (EDT)

>Received: from mh1.safeinternetemail.com (mh1.safeinternetemail.com [217.8.185.27])
by mhub1.cyber.com (8.11.4/8.11.4) with ESMTP id j6NKq0n16875
for <megan@egate.internal.cyber.com>; Sat, 23 Jul 2005 16:52:01 -0400 (EDT) X-
anti-virus-Scanned: anti-virus scanned by SIE - http://safeinternetemail.com/

Received: from 207.8.185.17 ([222.137.134.238])
by mh1.safeinternetemail.com (8.13.1p1/8.13.1) with SMTP id Aj6NJfrNQ010050
for <megan@cyber.com>; Sat, 23 Jul 2005 15:42:19 -0400

X-Apparently-To: megan@cyber.com via 207.8.185.17; Sat, 23 Jul 2005 21:37:09 +0100
X-Originating-IP: [222.137.134.238]
Received: from 222.137.134.238 (HELO 207.8.185.17) (222.137.134.238) by
mta285.mail.scd.yahoo.com with SMTP; Sat, 23 Jul 2005 17:38:09 -0300
MIME-Version: 1.0
Message-ID: <92224564890.1225010.13793.z17@mcimail.com> Delivered-To:
megan@cyber.com
Date: Sat, 23 Jul 2005 17:41:09 -0300
From: rzitgiskrs@rocketmail.com

VSTK Manual 5th Edition 262 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

To: megan@cyber.com
Subject: Presenting Home Loans made simple
Reply-to: rzitgiskrs@rocketmail.com
Content-Transfer-Encoding: 7Bit

Note how all the IP addresses agree with each other (except, of course, where the spammer
tried to hide his identity). It must be kept in mind however, that the “originating IP” is the first
known computer to send out the spam. The spammer is hiding behind it, preserving their
anonymity. If this data is to be used in the VDL, an IP lookup must first be done. Sites like
http://ws.arin.net/whois/?queryinput and http://www.zoneedit.com/lookup.html can help to
identify the site of origin of the spam as far as it can be followed by IP listings.

Now it is time to look at the email portion of CyberSoft’s analysis. The example below
illustrates a salient point in the use of email addresses as VDLs, which is that not all email
addresses can be trusted. The address “rztgskrs42@ rocketmail.com” is obviously false,
created by a randomization process which changes the email address with each spam wave. If
nothing else can be found to use in an email, such as the “test” email with no subject and no
body, use this, but try to see if there is a pattern among any repetitions of this email for future
vdls.

Delivered-To: megan@cyber.com
Date: Sat, 23 Jul 2005 17:41:09 -0300
From: rztgskrs42@rocketmail.com
To: megan@cyber.com
Subject: Presenting Home Loans made simple
Reply-to:kdjlwst42@rocketmail.com
Content-Transfer-Encoding: 7Bit Delivered-To: megan@cyber.com
Date: Sat, 27 Aug 2005 17:41:09 -0300
From: rztgskrs45@rocketmail.com
To: megan@cyber.com
Subject: Home Loans made simple and easy
Reply-to: kdjlwst45@rocketmail.com
Content-Transfer-Encoding: 7Bit

R,$from,.*,~”rztgskrs”,$d[2-3],~”@rocketmail.com”#
OR R,”Reply-to,.*,~”kdjlwst”,

$d[2-3],~”@rocketmail.com”#
OR R,$subject,.*,~”Home Loans made simple”#

As can be seen in the above example, the “From:” and “Reply-to:” lines don't always match.
This is especially common in scam spam, like the Nigerian Scam. However, in scam spam,
the two addresses are usually masquerading as legitimate email addresses used by real people,
so both of these addresses can be taken and used to create VDLs. That way, if one of them is
reused at some point in the future, the email will still be detected.

VSTK Manual 5th Edition 263 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

If the Return-Path address matches the sender's domain name, which matches the “From:”
address, this doesn't necessarily mean that the email is from this place or this person.

Return-Path: <SylviBragg@furniturebrands.com>
Received: (from uucp@localhost)

by egate.cyber.com (8.11.7/8.11.7) id j78B0Ai20796
for doodah @egate.internal.cyber.com; Mon, 8 Aug 2005 07:00:10 -0400 (EDT)

>Received: from mh1.safeinternetemail.com (mh1.safeinternetemail.com [207.8.185.17])
by mhub1.cyber.com (8.11.4/8.11.4) with ESMTP id j78C81n02775
for < doodah @egate.internal.cyber.com>; Mon, 8 Aug 2005 08:08:01 -0400(EDT)
X-anti-virus-Scanned: anti-virus scanned by SIE - http://safeinternetemail.com/

Received: from furniturebrands.com (61-216-76-163.dynamic.hinet.net [61.216.76.163])
by mh1.safeinternetemail.com (8.13.1p1/8.13.1) with SMTP id Aj78AwPih012841
for < doodah @cyber.com>; Mon, 8 Aug 2005 06:58:27 -0400

Message-Id: <200508081058.Aj78AwPih012841@mh1.safeinternetemail.com>
From: "Sylvi Bragg" <SylviBragg@furniturebrands.com>
To: "Yaw Harbin" <doodah@cyber.com>
Subject: =?iso-8859-1?Q?Cool_S=C1VING?=
Date: Mon, 8 Aug 2005 05:58:22 -0500

Since the server has given the correct IP address in the originating position (due to DNS
lookup), a trace back can be conducted to find out who the real culprit is and block the IP
address on principle. If it really is Sylvi Braggs, then the course of action is clear--use the
address in the VDL.

Some spammers avoid using names of real or fictional people and use the same “pseudo-
identity” over and over again.

Received: from ensim (plct.ramifis.trojan.com)
Received: from ensim (tojo.georgiesguy.jerkadoodle.net)

Ignore the domain name in this case. They are almost certainly spoofed and are changed
regularly. However, the lazy spammer has kept their “trademark” sender signature, “ensim”.

G,$recd,”ensim (“

where $recd is a macro representing "Received","\x3a\x20","from","\x20", “ensim” is case-
specific, and the space and opening parenthesis signify that no other characters follow
“ensim”, thus avoiding false detections on an identity which contains the word “ensim”.

When dealing with email addresses that also contain numbers, it is not necessary to use the
“case- insensitive” (tilde) feature unless it is also desired to find the “raw” IP address, sans
decimals, as well as the IP or email addresses. An address like this one may carry the IP
address before the “@” and the name of the last sending computer after.

VSTK Manual 5th Edition 264 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

In this case, the “case-,spacing-, and punctuation-insensitive” (double-tilde) feature can be
used.

Received: from 222137134238@rottoncowboy
R,~~”222.137.134.238”#

This feature also works with phone numbers where they could be written differently in each
email. More on that later. Just remember that double-tildes are expensive in resources and
may slow down the scan.

Using Email Addresses in the Body

Not all email addresses are found in the headers, of course. Quite a few can be found in the
body of the email. For example, this spammer has very nicely provided the domain name of
their client and a choice of ways to use it.

info@ecobusiness.edu</p>
<p class="MsoNormal">

B,$DOM1,~”ecobusiness.edu”#
OR B,~”mailto”,@-5,~”gbh@ecobusiness.edu”#
OR B,~”info@ecobusiness.edu”#

Many spam emails don't give much of a choice. There may be only one email address, or only
one url. This can simplify things as long as the addresses are valid. Many will be
“throwaway” addresses and urls and may only be good for the short term, but this is better
than nothing, and a pattern may be detected farther on down the line.

An IP address isn't only useful for urls; it can also be used in email addresses. In this case,
however, the spammer changes it so that it is not obviously an IP address. Usually, IP
addresses are written in “dotted-quad” form (1), but a spammer can hide it by changing it to a
decimal (2). To make matters worse, he can even change it to octal (3) or hexadecimal (4).
The might even try to mix them up together (5) or use a variant of hex (6), just to make things
interesting.

(1) 182.175.90.10
(2) 3064945162
(3) 0266.0257.0132.012
(4) 0xb6.0xaf.0x5a.0x0a
(5) 0266.175.0x5a.10
(6) %31%38%32%2e%31%37%35%2e%39%48%2e%31%30

VSTK Manual 5th Edition 265 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Look for the http:// for a url, @ for an email address (use the string of numbers before the @
sign, not after), or just feed the values into a Hex/Decimal/Octal/Binary Converter and the IP
address will be found. Otherwise, simply use the values as provided in the email, since they
read the same to VFind. This trick is only meant to fool the eye, not the scanner. Just don't
use a tilde before the data stream.

A href=”http://%31%38%32%2e%31%37%35%2e%39%48%2e%31%30
G,$DOM1,”%31%38%32%2e%31%37%35%2e%39%48%2e%31%30”#

mailto: 3064945162 @rottenboytoy
G,”3064945162 @“#

http://paypal.com.0266.0257.0132.012/securelogin
G,$DOM1,”0266.0257.0132.012”#

A similar trick, using hex values to represent characters in a url, can also be used to replicate a
domain name. Spammers take a standard text url, substitute hex values for letters, numbers,
and punctuation to create an obfuscated url. They can even leave in some of the original text
(in bold), just to make it interesting, but this will not affect how the VDL is crafted.

G,$DOM1,~"%70os%74%2e101%6e%65ws%2e%62%69z"#

If the spammer is obscuring a url that has several “nodes” to it (those areas between the
punctuation in a url), look for the second-to-last “%2e” (hex for “period”) and take the data
from right after it. This is where the actual domain name resides. FYI, “ 2e%63%6f%6d”
translates into “.com”.

<a href=”http://%61%64%32%74%77%2e
%73%6%63%63%6%2%63%6%6d/sockittome>
G,$DOM1,”%73%6f%63%63%6f%2e%63%6f%6d”#

If the spam url is originating from another country, the country code will be at the end of the
domain name. In that case, go to the third “%2” and take the data after it. “2e%63%6f%2e
%75%6b” translates into “.co.uk” and is a fairly standard format for foreign urls.

http://%77%61%68%6f%6f%2e%68%6f%72%73%79%2e%%63%6f%2e%75%6b/uns
G,DOM1,”%68%6f%72%73%79%2e%%63%6f%2e%75%6b”#

Another way a spammer can hide a url is by making it a “readable” url. That means that the
url contains all the same information but has been spelled out to foil email scanners which are
looking for dotted quads.

(www dot riproaringgoodtime dot com slash freeporno)
P,(~”www dot riproaringgoodtime dot com”)|(~”www.Riproaringgoodtime.com)#

VSTK Manual 5th Edition 266 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

This VDL uses the low-level “or” function to look for both forms of the url. The same results
could be obtained by creating and using a macro.

$define urlp"\x2e\x2f\x3a"|~~" dot "|~~" slash "|~~" colon "
P,(~”www”,$urlp,~”riproaringgoodtime”,$urlp,~”com”,$urlp,~”freeporno”#

Of course, the whole problem could be ignored and another VDL could be created.

(www dot riproaringgoodtime dot com slash freeporno)
P,~~”freeporno”,WP1#

Again, much of this will be dealt with at greater length later. This is just FYI.

Finally (for now, at least), a url can be altered to omit its domain extension. Any signature
which is set up to detect an entire domain name would be fooled by this simple trick.
However, a VDL or two can be written in such a way as to take this into account.

http://bulls./?isotopextvuyguilezvpAndromeda
M,$DOM1,~”bulls”,$DOM3,”?”#

OR M,$DOM1,~”bulls./?”

By using the macro “$DOM3” (which covers domain extensions, country codes, and any
trailing punctuation), can be set the VDL to detect “http://bulls.Com/?”,
“http://bulls.com.uk/?”. Without it the VDL will detect “http://bulls./?”

VSTK Manual 5th Edition 267 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Chapter Three: Key Words and Phrases

Once making VDLs out of URLs and email addresses becomes easy, it is time to move on to
finding key words and phrases. Keywords are useful because they are often used repeatedly
by a spammer for a certain kind of spam. This is most easily demonstrated by examining
medicalspams.

Subject: Don't you want to get V1@grr@ cheap?yajlisnl

Here at our e-pharm you can find the cheepist medz on the planet! We gaurentee the best
quality at the besst prrices!

F*R*E*E* shipping next day!

Whatever you need, we've got! There's sumthing here for everyone! Click
Herehttp://oputoetu.hotmedsnow.com/ad/woohoo.php

Here is a veritable smorgasbord from which to choose. Of course, the obvious candidates
cannot be overlooked...

P,$DOM1,"hotmedsnow.com"# standard url vdl
P,$website,.*,~woohoo.php"# website url macro + "this line only"jump
P,~"Click Here",.*,~"hotmedsnow.com"# variant of url vdl +"this line only"jump

Now lets, for a moment, suppose that the url and email addresses are useless, looking
something like “http://0u-uita.werwjlie.com/li3/sergsd.index” or “”. What should be done
next? Look for keywords! Keywords are words that are so distinctive that they are found in a
large percentage of spam emails without appearing in normal, everyday internet
correspondence. Using the email above as the source, many unique VDLs can be made using
the text provided.

M,"F*R*E*E*"# no tilde used—you want this one verbatim

M,~"V1@grr@"# pretty unique
M,~~"e-pharm"# may also be epharm—needs double-tilde
M, ~"cheepist"# spelling only correct if you are a bird
M,~"medz",WP1# could be part of legit name like “MedZone”--needs WP1
M,~"gaurentee”# bad spelling is common in spam—more info later!
M,~"besst prrices”# doubled characters are also common—ditto

Suppose that there are no distinct words in the above spam. Every word is correctly spelled,
the email is formatted like a normal business document, etc. Out of necessity, looking at key
phrases should be next. Key phrases must be fairly unique, appearing infrequently in the
average email. Here is an example of the typical spam hype that can be used for a VDL.

VSTK Manual 5th Edition 268 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

M,~”Here at our e-pharm you can find the cheapest meds on the planet!”#
M,$subject,.*,~~”Don't you want to get Viagra cheap? “,.*,”yajlisnl”#

Note the use of the double-tilde, which allows VFind to detect any of these words even if their
spacing, case, or punctuation change. Also, a macro for “Subject” is used here to limit the
search only to the subject line. Even if the data string appears somewhere else in the email, as
it could in a normal email between friends, VFind will not detect it. The random characters at
the end of the line can distinguish this spam from other pieces of spam sent out by the same
spammer, but most of the time it will be beneficial to leave it off so that the VDL is more
flexible and can detect more spam emails.

Besides using key phrases, it is good practice to include the "http" part of a url. That way,
even if the url changes (and it probably will), the VDL will detect the "template" of the email
through its distinctive phrases and their relation to a web link.

P,~~"Whatever you need, we've got!",@-200,"http"#
P,~~"There's sumthing here for everyone! Click Here http"#

VDLs can be made even more flexible by using the AND function. This function allows for a
VDL to be created that will look for two or more data strings within the same email, without
concern about which one comes first. For example, in looking for strings A1 and B2 and C3
in an email, they would be detected even if B2 came before A1 and after C3.

M,~”Viagra” AND ~”Buy Now!!” AND ~~”Enlarge your Manhood today!”#

This VDL will detect these three strings regardless of where they appear in an email.
Each alone is characteristic of spam, but together they make a false hit on an innocent
email very unlikely.

The upper-level OR function can also be used to make one VDL do the work of many. This
is best when a spam email contains one or more of these key words or phrases but not
necessarily all. It is also unconcerned about their order in the email.

M,~”Viagra” OR ~~“Enlarge your Manhood today!” OR ~~”cheap epharm meds”#

The lower-level OR function (pipe) can be used if there are many variants of a key word or
need to find certain words of phrases which might be common to a category of spam email.

M,~”vaigra”|~”V1@GR”|~”VIGARA”|~”Vagira”|~”Virgaa”|(~”\/ia”,WP1,~”gra”)|~”Viarga”|
~”vigaara” |~”Vgiaga”|~”Vimaga”|~”iaqÂ§ra”|WP1,~”V1agr” |~”\/I()}{}”|~”V1AGR0”
WP1,~”Viaagr”#

VSTK Manual 5th Edition 269 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

In this case, VFind will search an email for the variants of Viagra starting with the first
variant, then proceeding on to the second, etc, until it finds the variant. It will then notify the
user that a positive detection was made. The same goes for different words or phrases.

M,(~”Enlarge your Manhood today!”,@-100,”http”)|(~”try our low price on Viagra”)|
(~”show her the potency of a stallion tonight!”)#

Only one of these phrases needs to be in a given email for VFind to determine that it is spam,
yet they may all appear in spam about male potency drugs.

To look for all of the above phrases as they appear in an email, it is best to use a “jump” (@-
x, where x = maximum number of characters and/or spaces to skip) to pass by unimportant
data so that the words or phrases can be found that will determine that an email is spam.

M,~”Enlarge your Manhood today and show her the potency of a stallion tonight!”,@-
100,~~”try our low price on Viagra”,@-100,”http”#

In this case, the email must contain each word or phrase in exactly this order and no more than
100 characters and/or spaces away from each other. If “try our low price on Viagra” is 105
characters/spaces away from the “http”, the email will not be detected as spam, so it is better
to overestimate the jump than to underestimate it. However, if the jump is grossly
overestimated, the same email may end up being re-scanned, finding the “http” in the header,
before the first phrase.

Any words or phrases in capital letters and/or using multiple punctuations is worth
consideration when creating VDLs. These are often typical hyped-up advertising phrases
translated into text.

"COULD YOU USE SOME EXTRA MONEY AT THIS TIME?" "TRY IT RISK FREE!!!"
"NEED WE SAY MORE !"
"(STRONG BUY)"
"$$$ GET IN NOW $$$"
“What would you give to be DEBT-FREE in six months?????”

Any of these would make a fine VDL, especially if left in their native condition, i.e., case-,
punctuation, and space-sensitive. However, there are some emails that can benefit from a
selective trimming.

How's yourself?
It's Timothy, remember me?
My photo here http://vapaqelimoxu.com/view.cgi?s=ars&m=RjYfR.hLifS,hVX
--Best regards, Timothy

E,~~"How's yourself? It's ",@-15,~~"remember me? My photo here http"#

VSTK Manual 5th Edition 270 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

This VDL can detect this same template even if it contains a different name or url, which is
not at all unusual. In this VDL, it is best to use a double-tilde with a longer data string or a
short “jump” between two shorter data strings. This is due to the fact that the text “wraps
around”, or has a return at the end of each line, putting each phrase on a different line. Each
return must be counted as a space or all spaces must be discounted by using the double-tilde
function.

E,~"How's yourself?”,@-5,~”It's",@-15,~"remember me?”,@-5,~”My photo here”,@-
5,”http"#

One thing to remember when looking for keywords and phrases: never use anything in the
random text frequently found at the bottom of many spam emails today. This junk is put here
to foil the spam filters, that’s all. It serves no useful purpose and changes randomly. Avoid at
all costs.

VSTK Manual 5th Edition 271 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Chapter Four: Spelling, Grammar, and Other Tricks

Spammer Spelling

One of the most interesting parts of creating spam-detection VDLs is that all sorts of
variations on the English language can be seen. One of a spammer's favorite tricks is to
misspell words in hopes of fooling the scanner program. CVDL, however, is up to the
challenge.

How many ways are there to spell "Viagra"? After working in spam detection for awhile, it is
easy to figure out exactly how flexible and resourceful a spammer can be with that one little
word. In the beginning of spam, detecting this word was easy. No one thought to change it or
color it or anything else.

Subject: Try it today!!! the wonder of Viagra!!!
M,~"Viagra",WP1#

Times have changed and nowadays this Viagra email can be found:

Subject: COOLBEANS!! online PharmV1aggrrr4!!!
Howzabout sum VIÄGRRA, studboy?
V1@<the square of the hypoteneuse of the right triangle>GRA

This table shows real world examples of how people hide lexical information. In this
example, the spammer was attempting to sell fake Viagra. See below for VDLs.

This gives an idea how unconventional spammers can be. Here are some ways in which this
one word can be detected using CVDL:

VSTK Manual 5th Edition 272 of 343

V=EDAGRRA WlAGRA VlA'GRA V-AGRA
V'lAGRA Vagira Virgaa Viarga
VIGARA \/ia gra vigaara Vgiaga
Vairga Viaagr vgra xiagra
V1AGR0 viarag Vragra Vi graa
vaigra V1@GR iaqÂ§ra Vimaga
ziagra V1agr \/I()}{}

VSTK Manual 5th Edition CyberSoft Operating Corporation

:M,~"Viaggrraaa!!!"#
:M,~"ViAGGRÀ"#
:M,(~"x"|~:z"),~"iagra",WP1#
:M,"~"\/ia",WP1,~"gra",WP1#
:M,NOT (~"viagra",WP1) AND ($V,$letterI,$A,$G,$letterR,$A,WP1)#
:M,NOT ~"viagra" AND ({"Vv"}[1-3],{"Ii"}[1-3],{"Aa"}[1-3],{"Gg"}[1-3],{"Rr"}[1-3],
{"Aa"}[1-3]),WP1#
:M,{"Vv"},$r[0-1],{"Ii"},$r[0-1],{"Aa"},$r[0-1],{'"Gg"},$r[0-1],{''Rr"}, $r[0-1],{"Aa''},
$a[0-1],WP1]
:M,{"Vv"}[1-3],$nspo[0-1],{"Ii"}[1-3],$nspo[0-1],{"Aa"}[1-3],$nspo[0-1], {'"Gg"}[1-3],
$nspo[0-1],{''Rr"}[1-3],$nspo[0-1],{"Aa''}[1-3],$nspo[0-1],WP1#

CVDL is so versatile that it can detect numerous misspellings of a word both alone and with
the use of macros created specifically for the task.

Spammers love misspellings. It is one of the easiest ways to slip spam past a scanner. The
scanner looks for one spelling while the spammer provides another...and another...and another.
The lexical analyst can either react to what has already slipped past or try to out think the
spammer.

If a word or a misspelling is distinctive enough on its own, the word can be used directly from
the email. The only change made to it is to use the tilde function to indicate that the word is
case-insensitive, so it will also detect "Med1cat|0n", "Med1CAt|0n", and so on.

Subject: D|SCndüNT CANADIAN MED1CAT|0N
:M,~” D|SCndüNT”#
:M,~"MED1CAT|0N"#

Of course, sometimes they will use the same basic word but change it slightly with each new
email. One way of dealing with this sort of wordplay is to use the keyword as it appears in
each case but combine them into one VDL. Of course, anything that precedes the period
should be considered randomly generated nonsense.

http://jfoiuou9.walltransb0der.com
http://o0utaahj.walltrnsb0rder.com
http://098uawjt.walltrnsbod3er.com

:F,$DOM1,(~"walltransb0rder"|~"walltrnsb0rder"|~"wal1trnsbod3r"),".com"#

Or a more complex approach could be taken to try to detect the word in its myriad forms,
using sets of characters which could be used interchangeably {“0 or O or o”}or not at all
{“Rr”}[0-1]. Note that, in character sets, no commas are needed between the characters.
More on that later.

:F,$DOM1,(~"walltr”,{“Aa”}[0-1],~”nsb”,{“0Oo”},{“Rr”}[0-1],~”d”,Ee”},”r"),".com"#

VSTK Manual 5th Edition 273 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

One of the best-loved (and most used) methods of fooling the scanner is with inappropriate
punctuation, spacing, and case. It is easy enough to foil the spammer’s fun by using the
double-tilde function to eliminate these annoyances.

Try our new P_e*n=i.s Enh-anc~er!!!
M,~~”penis enhancer”#

Sometimes, however, a word may be common enough to be used in everyday parlance but
should be detected when it is in some way altered or enhanced. For example,

SALE***SALE***SALE!!New C-i_a=l.i*sSALE***SALE***SALE!!
M,NOT ”Cialis” AND ~~”cialis”#

In this case the NOT and AND functions were used. These two operators are used
together to specify the spellings to exclude from detection (NOT) and then indicate what
to scan for and what parameters to use (AND). Here’s another example. When scanning
for a misspelled version of “Cialis”, the double-tilde function can be used to make a data
string case-, space-, and punctuation-insensitive, but this would also detect the word in a
proper form, such as in a medical clinic newsletter. The NOT function eliminates the
possibility of detecting the correct versions of the word while still detecting a version with
inappropriate capitalizations, punctuation, or spacing.

Subject:BIG T|Me Phar.Mac_Euti CaIs!!!
M,NOT ("pharmaceutical"|"Pharmaceutical") AND ~~"pharmaceuticaI"#

In this case, any spaces, punctuation, or change in case will avail the spammer naught, for he
has been caught. Even the ending “I” is nothing to be worried about, because there is no such
word as “pharmaceuticai”.

Another fun way to obscure words is with doubled letters. This trick basically maintains the
integrity of the words without losing the flow of the message. In a case such as the one below,
the use of character sets and a range operator can effectively nip this one right in the bud.

Subject:Best ppriced pHaRrmAacEuT|c@AlS
:M 115586,NOT (“Pharmaceuticals”|”pharmaceuticals”) AND ({"Pp"}[1-3],{"Hh"}[1-3],
{"Aa@"}[1-3],{"Rr"}[1-3],{"Mm"}[1-3],{"Aa@"}[1-3],{"Cc"}[1-3],{"Ee"}[1-3], {"Uu"}[1-
3],{"Tt"}[1-3],{"Ii|1l"}[1-3],{"Cc"}[1-3],{"Aa@"}[1-3],{"Ll"} [1-3],{"Ss"}[13])#

Here’s what just happened. The character set {“Pp”} is read as “look for P or p, scanning for
them in that order”. Within the soft brackets of a character set, the data must still be
surrounded by quotes to indicate a data string. The range operator in hard brackets [1-3] is
read as “look for each of the characters in the preceding set to be present once or twice in this
position in the VDL”. Range operators can only be used with character sets or macros, not
data strings, and must be used without a comma preceding them.

VSTK Manual 5th Edition 274 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

In the example, “Ppharmmaceeuticcaals” ,{“Pp”}[1-2] indicates that both the “P” and the “p”
can be found on the same scan, whereas if there were no range operator, either the “P” or the
“p” would be found, but not both. If the range operator read [0-2], then the character set
{“Pp”} could be missing entirely or both characters could be detected on the same scan.

The NOT operator ignores any "normal" spelling of the word "pharmaceutical" but will detect
any misspelling due to multiple letters, unnecessary punctuation or spaces, or changes in letter
case. The two forms or the word “pharmaceutical” are set off together by parentheses,
indicating that both of them belong with the NOT function.

The lower-level OR function (represented by the pipe symbol, |) between the two words
indicates that the scanner must scan first for "Pharmaceuticals" and then for
"pharmaceuticals", in that order. The data string after the AND operator is used to find the
desired spam email content.

This type of VDL can detect any combination of upper and lowercase characters, numbers, or
punctuation marks that can be used to misspell this word other than the two which are
excluded by the NOT function. The VDL construction is, therefore, very flexible and would
also detect:

Subject:Best ppriced pharrrma@ceutticals
Subject:Best ppriced PharMaceuticaals
Subject:Best ppriced pPhaarmAceuticaals

Working with the last sample, a VDL can also be made out of the simple misspelling “t|me”,
using the double-tilde function to detect changes in case. This vdl is doesn’t need a NOT
operator because the case of the surrounding letters doesn’t affect the character replacing the
“i”, which is a case-insensitive “pipe”.

M,~”t|me”,WP1#

However, if the word was misspelled as “tIme”, using a capital “I” instead of a case-
insensitive “pipe”, a method to avoid changing the “I” to an “i” with a tilde function would
have to be found, as in the VDLs below.

M,WP1,~”t”,”I”,~”me”,WP1#
M,NOT (”time”|”Time”) AND (WP1,”t”,{“I|!1”},~”me”,WP1)#

The “WP1”seen there is a handy little shortcut which represents any punctuation or space,
starting with the first position either before (WP1,”) or after (“,WP1) the word in question. In
this way, the macro is making sure that the word does not fall into the middle of another word
where its apparent misspelling might actually be appropriate.

VSTK Manual 5th Edition 275 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Maybe, in this case, an email telling a co-worker to meet after work at “HappYtImE Bar”
might just be appropriately spelled. The WP1 eliminates this possibility, as would its cousin,
W1 (whitespace 1 or more spaces). Under certain conditions W0 or WP0 could even be used,
such as:

With our 30-day plan, your m0rTg@g pyaments can be eliminated without mor+gAg1ng
yourself to the hilt with your M0rtg@g!

R 153348,NOT (W1,~mortgag”,WP0) AND (W1,{“Mm”},{“Oo0”},{“Rr”},{“Tt+”},{“Gg”},
{“Aa@”},{“Gg”},WP0)

The WP0 allows for the presence of no white space or punctuation after the word
(mortgaging) or one white space (mortgag) or punctuation mark (mortgag!).

Character sets can be used in many ways to improve VDL versatility. To create a VDL for
this:

Get sum V1ja grr@ for yur gal’s undying thanks!

:M 12389,NOT (WP1,~~"Viagra",WP1) AND (WP1,{"Vv"}[1-2],{"Jj",$letterI}[1-2],
{"Aa"}[1-2],$punct[0-1],{"Gg"}[1-2],{"Rr"}[1-2],$letterA[1-2],WP1)#

This example combines simple and compound character sets with macros (next chapter) to
cover the waterfront on this one. Two character sets have been coupled to create one
compound one {"Jj",$letterI} and increased its range to allow for multiple characters in this
set to be displayed [1-2]. The macro $punct allows for one or no punctuation marks or spaces
within the word, and the letter macros A and I allow for variations in spelling using different
characters which look similar. The WP1 allows for whitespace or punctuation before or after
the word while setting if off as a separate word and not part of another word. These tactics not
only detect the sample above but also project into the future to possibly detect a variant that
has not yet appeared.

Spammer Grammar

Bad spelling is not the only trick up spammer’s sleeves. In their efforts to outwit the lexical
scanners they will also employ bad grammar. Any legitimate company would pay for
someone to proofread their ads so that they present a professional, credible front. Not so
spammers. They will frequently insert bad grammar into an email to slip it past the scanners,
which are looking for certain words and phrases as they are written in proper English. For
example, a spammer might write,

So try our product. We gaurantee your satisfaction and can demonstrate how yur presence on
the web will improve.
We specializing in Email Marketing

VSTK Manual 5th Edition 276 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

:B 00433,~"We specializing in Email Marketing."#

OR

We sell good replikka watches! Cant tell ‘em from original! Make all urfriends envous!
ur favorite brands of replica come and see our large selection
Visit us: http://bestwatches.info"

:F 02179,~~"ur favorite brands of replica come and see our large selection Visit us: http"#

Of course, good grammar has its place, too, and, if properly managed, can be used to create
VDLs that will detect emails based on a spammer’s style.

Email 1:
I can take a holiday when ever I have a notion to do so. Barbados and Costa Rica this year,
maybe even the Bahamas. This profession is so new thatit needs many more of us assisting
the courts and thepeople who have been wronged and need help. Sincerely, Bob"#

Email 2:
I can take a holiday when ever I want to do so. Greece and Turkey this year, maybe even
Italy. This profession is so hungryit needs many more of us assisting the courts and the people
who have been short-changed by the system. Sincerely," Bob#

Email 3:
I can take a holiday when ever I have a yen to do so. Argentina and Cancun this year, maybe
even Peru. This profession is so wide-openit needs many more of us assisting the courts and
the people who have been suffering too long. Sincerely, Bob"#

The basic structure of this email can be seen across the three samples. So, if the variables are
taken what is left is the meat of the email, which can be used to detect all variants of this
formula.

:F 02161,~~"I can take a holiday when ever I ",@-25,~"to do so.",@-20,~"and
",@-50,~"this year.",@-50,~"This profession is so ",@-10,~"it needs many more of us
assisting the courts and thepeople who have been ",@-25,~"Sincerely, Bob"#

Repetition of certain phrases can set a spam email apart from all others. This can be found in
certain “form” emails sent out by places that deal in risky ventures, such as penny stocks, etc.
In these cases, certain disclaimers are used which would seem to absolve the sender from all
responsibility for either advice or for spamming. These, of course, are worthless. Usually, the
more they protest their innocence, the more bogus the disclaimer.

Email 1:
This message contains certain forward-looking information that may put the investor atrisk
due to the unforseen fluctuations of the market.

VSTK Manual 5th Edition 277 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Email 2:
This message may contain certain forward-looking statements which may put the
investor in an uncertain financial situation due to the radical changes that is possible with
these stocks.

Pick out the meatiest part of this statement to get this VDL:

:F 02137,"\x22",~"forward-looking","\x22\x20",(~"information"|~”statements”) & (~"risk"|
~"uncertainty")#

Some disclaimers actually try to convince the recipient that he or she has asked for this spam
when, in fact, they received it because someone sold their name and email address in a
database to another company. Some of these statements can be used just as they appear as
long as there is something distinct about them, such as containing the name of the spamming
entity.

:F 02139,~"You're receiving this because you signed up for special offers from TheUseful. "#

Another type of disclaimer uses language that tells the recipient that he or she must “opt-out”
of the program. This is typical of a spammer. Most legitimate, straight-dealing businesses
will only offer an “opt-in”, where the user has to make a choice to accept their offer, not to get
out of it.

:U 00074,~"You are receiving this mailing because you opted in"#

Other tricks include trying to convince the user that they are not spammers and that the user
does not have to report them to an oversight agency because this is a one-time only email.
Don’t believe it, just use it to create a VDL.

:U 00111, ~W"This is NOT SPAM"#
:U 00112,~"This is a one time mailing"#

Of course, some spammers don’t feel the need to cover their tracks and are quite
straightforward about their intentions.

:U 00139, ~W"This is a PAID ADVERTISEMENT"
:F 02133,"-*-*BUY*-*-*-*BUY*-*-*-*BUY*-*-*-*BUY*-*-*-*BUY*-*-*#

Material for VDLs can be found most anywhere, even in the unsubscribe section of a spam
email. Certain spammers re-use the same structure for this purpose.

To unsubscribe, plaese click here:
www.riproaringgoodtime.com/common2/images/reject.gif"#

To unsubscribe, plaese click here: reject.gif"#

VSTK Manual 5th Edition 278 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Note the misspelled “plaese”; misspellings are common in all areas of spam. However, this is
not sufficiently unique to warrant its own VDL. Since the website changes with each wave of
emails, something else must be found to make this data string unique. Therefore, use of the
website altogether should be avoided and focus on the data string which follows it. In both
cases it is identical and can serve as part of the VDL.

:U 65789,$website,.~"common2/images/reject.gif"#
OR:U 55466,~~”To unsubscribe, plaese click here: www.”#

where $website represents($url1,.*,$DOM3) or, in other words;

(~"http://"or ~"https://"), a jump restricted to the same line, until it finds (".com" or ".net" or
".biz" or ".org" or ".tv" or “.co" or ".info" or ".to" or ".ca" or ".ar" or ".us" or ".tr" or ".ru" or
".de" or ".uk" or ".se" or ".kr" or ".es" or ".jp"), followed by at least 1 space or punctuation
mark (which is why the “/” isn’t needed preceding “common”).

It's fun when a spammer tries to be tricky with his format. Some spam unsubscribe info can
be kept largely the same but with little twists, such as these.

QUIThttp://deco.wahooyahoo.net/getmeoutahere
Q.U.i.thttp://234ahere
Q-u.i>thttp://ahere
Quithttp://arwarahere

This data can be handled a number of ways, as seen below. Please note the use of the W1
function, which represents at least one white space.

:U 00864,$website,”getmeoutahere”,W1#
OR:U 08679,”\x0a”,~”Q”,$punct[0-3],~”U”,$punct[0-3],~”I”,$punct[0-3],~”T”,W1,~”http”#
OR:U 78965,~~”quit http”,@-25,”getmeoutahere”,W1#
OR:U 65897,(”Q.U.i.t“|”Q-u.i>t”|”Quit “),W1#

Any of these VDLs will detect the samples above. They vary only in the data string that they
are written to detect. The “getmeoutahere” is rather unique, as are the various constructions of
the word “quit”, therefore they can work together or apart. It only depends on what
constructions are shared between samples.

Other Spammer Tricks

Attachments

Sometimes all that can be found in a spam email is a slip of nondescript text and an
attachment. Text strings like “Here is your file” or “This is the website you were asking
about” are too generic to be of any value as a VDL.

VSTK Manual 5th Edition 279 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

If there isn’t anything useful to be found in the headers and no other information is available,
the attachments may be the place to look for a data string. One thing to remember, however,
is that data strings from two different parts of the email cannot be taken. Take all the data
from either the body, header, or attachment of the email, but not two or three.

Content-Type: image/jpeg;
name="dc008564.jpg"
Content-Transfer-Encoding: base64
Content-ID: <004001c5de2d$4fa9cd70$0e3ba8c0@MIDNIGHT>

Using the macro $att, which stands in for Content-Type: image/jpeg;name=", the VDL would
look like this:
:G 11551,$att,”dc008564.jpg”#
The attachment name must be case insensitive and distinctive. An attachment named
“photo.jpg” would be too generic to be useful, but one named “Marxie345.jpg” might work
out.

Another way of catching a spam attachment is to use the first line of code in the attachment.
For example, if something like these lines can be seen in some spam emails,

R0lGODdhrgGeAoAAAP///wAAACwAAAAArgGeAgAC/gwcqZvH696LErFDa1a0W7
R0lGODdh1gGkAYAAAP///wAAACwAAAAA1gGkAQAC/owPmAHLzY6MKMKn6t
R0lGODdhsgGoAlAAAP///wAAACwAAAAAsgGoAqAC/gwcqZvH696LErFa1a0W7

thank the spammer and do this,
R0lGODdhrgGeAo AAAP///wAAACwAAAAAr gGeAg AC/gwcqZvH696LE
R0lGODdhlgGkAYAAAP///wAAACwAAAAA1gGkAQAC/owPmAHLzY6
R0lGODdhsgGoAl AAAP///wAAACwAAAAAs gGoAq AC/gwcqZvH696LE

Resulting in,

:G,"R0lGODdh",@1,”gG”,@1,”A”,@1,"AAAP///wAAACwAAAAA", @1,”gG”,@1,"A",
@1,"AC/"#

Note that a definitive jump (@1) can be used in this case, since the variations in the data string
are constant.

SpamTable VDLS

Recently spammers have started a new trend—breaking up keywords in a table format. Since
the breaking-up of the keywords changes with each spam variant, it is best to focus on the
structure rather than the content.

VSTK Manual 5th Edition 280 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

<DIV style=3D"FLOAT: left;">V
L
X
C
P

C
A
U
V
M</DIV><DIV style=3D"
FLOAT:left;">ali
evi
ana
ele
rop
ial

mbi
ltr
iag
eri</DIV>style=3D"FLOAT:left;">
um
tr
x
br
ec
is
en
am

ra
di</DIV><DIV style=3D"FLOAT: left; "> $3
a

ex
ia
 $1

 $3
a</DIV><DIV
style=3D"FLOAT: left;">.7

.2

.3

</DIV><DIV style=3D"CLEAR: both"> </DIV><DIV><A href= 3D"
http://www.countravetim.com"> http://www.countravetim.com</DIV>
</DIV></BODY></HTML>

Of course, the simplest VDL would be made from the website itself.
G,$DOM1,~” countravetim.com”#

However, since urls change so often, trying it this way might be easier:

G,”<DIV “,@-20,~"FLOAT”,$nspo,@-20,">”$ucletts[1-3],”
”$ucletts[1-3],
”
”$ucletts[1-3],”
”$ucletts[1-3],”
”$ucletts[1-3],”
”$ucletts
[1-3],”
”$ucletts[1-3],”
”$ucletts[1-3],”
”$ucletts[1-3],

”$ucletts[1-3],”</DIV><DIV “,@-10," FLOAT”,$nspo,@-20,”>”,$lcletts[1-3],
”
”,$lcletts[1-3],”
”,$lcletts[1-3],”
”,$lcletts[1-3],”
”,$lcletts
[1-3],”
”,$lcletts[1-3],”
”,$lcletts[1-3],”
”,$lcletts[1-3],
”
”,$lcletts[1-3],”
”,$lcletts[1-3],”</DIV>” & $website &
“</DIV>”#

Looks a little overwhelming. So, break it down into more manageable bites. The more
complex the spam format, the greater the need to simplify it for a VDL. Anything too
complex will be specific to one type of spam only, whereas a simpler structure can catch many
more. Macros are very helpful here, and are the subject of the next chapter.

One of the “easier” ways of managing a table format spam is to search for a particular word
that is broken up by the table rather than to detect the larger format. In this case,

color=3D#329F32>t miss P</TD><TD></TD>
<TD vAlign=3Dbottom rowSpan=3D2><FONT size=3D4 face=3DArial =
color=3D#329F32>Express Specia</TD><TD></TD>
<TD vAlign=3Dbottom rowSpan=3D2><FONT size=3D4 face=3DArial =
color=3D#329F32>ffer</TD><TD></TD>
</TR>
<TR style=3D"WHITE-SPACE: normal;">
<TD vAlign=3Dbottom>i, =
Don'</TD>
<TD vAlign=3Dbottom>harm=
a</TD>

VSTK Manual 5th Edition 281 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

The word “Pharma” can be searched for in the structure. Since it is not a distinct word on its
own, it is eminently usable for the purpose of creating a VDL.

color=3D#329F32>t miss P</TD><TD></TD>
<TD vAlign=3Dbottom rowSpan=3D2><FONT size=3D4 face=3DArial =
color=3D#329F32>Express Specia</TD><TD></TD>
<TD vAlign=3Dbottom rowSpan=3D2><FONT size=3D4 face=3DArial =
color=3D#329F32>ffer</TD><TD></TD>
</TR>
<TR style=3D"WHITE-SPACE: normal;">
<TD vAlign=3Dbottom>i, =
Don'</TD>
<TD vAlign=3Dbottom>harm=
a</TD>

Now create a VDL utilizing only those parts of the structure needed in relation to the word
“Pharma”. Note that the jump contains a minimum and a maximum value. This means that
the scanning should start at 50 bytes (characters or spaces) after the string and end 300 bytes
after the string. This is one way in which to decrease scanning time, by limiting how much
data to scan.

M 156285,W1,”P<”,@50-300,~”>harma”#

How was this done? Well, the beginning initiated from the “P” in “Pharma” indicating that
there was a break in the word (“<”), jumped over everything in the middle that wasn’t
important to this word, then resumed the search at the next break before the rest of the word
(“>harma”), ignoring the “=” which only indicates that the word is wrapped around from one
line to the next. A WP1 would not be added at the end of the vdl because the whole name is
PharmaExpress, and to be able to detect this word in other table vdls with a different layout,
something following “Pharma” would need to be allowed. other than a space or a punctuation
mark. Now go one step further. Suppose the table broke up the word at a different point

color=3D#329F32>t miss Pha</TD><TD></TD>
<TD vAlign=3Dbottom rowSpan=3D2><FONT size=3D4 face=3DArial =
color=3D#329F32>Express Specia</TD><TD></TD>
<TD vAlign=3Dbottom rowSpan=3D2><FONT size=3D4 face=3DArial =
color=3D#329F32>ffer</TD><TD></TD>
</TR>
<TR style=3D"WHITE-SPACE: normal;">
<TD vAlign=3Dbottom>i, =
Don'</TD>
<TD vAlign=3Dbottom>rma
</TD>

VSTK Manual 5th Edition 282 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

What to do? Same thing, only move the jump. In fact, all the bases could be covered by
creating VDLs which could find this word regardless of how it is broken up, or even in which
order the parts lie.

color=3D#329F32>harma</TD><TD></TD>
<TD vAlign=3Dbottom rowSpan=3D2><FONT size=3D4 face=3DArial =
color=3D#329F32>Express Specia</TD><TD></TD>
<TD vAlign=3Dbottom rowSpan=3D2><FONT size=3D4 face=3DArial =
color=3D#329F32>ffer</TD><TD></TD>
</TR>
<TR style=3D"WHITE-SPACE: normal;">
<TD vAlign=3Dbottom>i, =
Don'</TD>
<TD vAlign=3Dbottom>t miss
P</TD>

The result:

M 156285,W1,”Ph<”,@50-300,~”>arma”#
M 156286,W1,”Pha<”,@50-300,~”>rma”#
M 156287,W1,”Phar<”,@50-300,~”>ma”#
M 156288,W1,”Pharm<”,@50-300,~”>a”#
M 156289,”>harma”,@50-300,W1,~”P<”#
M 156289,”>arma”,@50-300,W1,~”Ph<”#
M 156289,”>rma”,@50-300,W1,~”Pha<”#
M 156289,”>ma”,@50-300,W1,~”Phar<”#
M 156289,”>a”,@50-300,W1,~”Pharm<”#

Now the word “Pharma” can be detected, no matter where it falls in the table or in which order
the pieces are placed.

Now here’s an interesting challenge—how to scan for something that isn’t there. Say that
there is an email where there is no subject.

VSTK Manual 5th Edition 283 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

From mikeqgiy@hotmail.org Fri Nov4 18:59:11 2005
Return-Path: <mikeqgiy@hotmail.org>
Received: (from uucp@localhost)
<contents clipped>
Received: from 243.227.199.119
by mailhost.hotmail.org with ESMTP (Exim 4.05) idqeOVbqWPP7MV
Reply-To: "Otis Major" <omjr@hotmail.org>
From: "Otis" <omjr@hotmail.org>
Message-ID: <9933012418.762526077215@hotmail.org>
Date: Fri, 4 Nov 2005 18:59:11 -0500
To: <megan@cyber.com>
X-UIDL: Status: R
X-Status: NC
X-KMail-EncryptionState:
X-KMail-SignatureState:X-KMail-MDN-Sent:

Now suppose there is also no body, and nothing especially noteworthy in the header, since the
sender could, conceivably, be a real person, so blocking their name and address may not be the
ideal response. What to do? Try this:

G,NOT “\nSubject:,” AND $recd,@-500,”\nStatus:”#

The VDL, basically, says to look for the “Received: from” header line, then ignore everything
after that until the “Status:” header line, the one being above where the “Subject:” header line
would normally be, and the other below it. Anything with an “X” may not be good to use in
front of it because these are all “optional” headers and may not exist in all headers of this type
of email. However, this vdl also says to ignore an email if there is a “Subject:” header line.
Therefore, when it scans an email header, if it finds both “Received: from” and “Status:” but
not “Subject:”, it detects the email as being spam.

VSTK Manual 5th Edition 284 of 343

mailto:uucp@localhost

VSTK Manual 5th Edition CyberSoft Operating Corporation

Chapter Five Creating and Using Macros

Macros, while easy to use, are complex to create. A macro must be created to find a particular
word or phrase and then tested in a vdl, before using it as a part of that vdl, to make sure that it
doesn't false-hit on a “clean” file or an “innocent” word.

Start with a simple format. There are a large number of spam emails that deal with time. The
times can vary from seconds to years between emails while still maintaining the same basic
format. What to do?

Well, a macro will need to be created that will detect any form of time used in this particular
format. For example:

Email #1:
This product can do in minutes what other products could take days to do!

Email #2:
This product can do in seconds what other products could take hours to do!

A macro can help detect both of these statements without having to resort to creating multiple
VDLs, each one detecting only one form of the email. First, gather together all the times
needed.

second, minute, hour, day, week, month, year

Now, select a macro name, using the $ to indicate a macro and define to indicate that this
word, when coupled with the $ will indicate that the macro “time” is to be used at a certain
point.

$define time

The next step is to combine the data strings (“seconds, minutes”, etc) with the macro name
and create the macro by indicating what the macro is to do with the data strings. Always leave
about 2-3 spaces between the name and the data string.

$define time (~"second" | ~"minute" | ~"hour" | ~"day" | ~"week" | ~"month" | ~"year")

In this case, the macro defines “time” as a second or a minute or an hour, etc. The parentheses
indicate that this string of data is to be considered as a unit, not as a single part of a larger
macro. The case-insensitive tilde precedes the word in quotes so that the macro can detect
“second” or “Second” or any combination of upper and lower case letters in this word. The
pipe, or lower-case or, indicates that the VDL is searching for “second” or “minute” or
“hour”, etc, in that order. In other words, first it will look for “second”.

VSTK Manual 5th Edition 285 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

If that word is not found, then it will look for “minute”, and so on, until it finds one of the
words contained in the macro or none of them, at which point it continues scanning with the
next VDL in line.

Since the macro is looking for the plural form of the words in these spams, the macro must
take this into account. Therefore, it could be written like this,

$define time (~"second" |~"seconds" | ~"minute" | ~"minutes" | ~"hour" | ~"hours" | ~"day" |
~"days"| ~"week" | ~"weeks" | ~"month" | ~"months" | ~"year"| ~"years")

OR

$define time (~"second" | ~"minute" | ~"hour" | ~"day" | ~"week" | ~"month" | ~"year"),@-1,

OR

another macro can be written for the “plural” forms of a word,

$define ending ((~"s",WP1) | (~"es",WP1) | (WP1))

here the tildes make the letters case-insensitive and WP1 indicates that there are one or more
white spaces (blanks) or punctuation marks of any kind behind the word. Note the internal
parentheses, which are needed to indicate that the letter and the WP1 are part of the same unit.
Otherwise it would read as look for ~“s”, then look for WP1 or ~”es”, then look for WP1 or
look for WP1

Now this new macro can be incorporated into the one just created previously with the
following result:

$define time ((~"second",$ending) | (~"minute",$ending) | (~"hour",$ending) |(~"day",
$ending)| (~"week",$ending) | (~"month",$ending) | (~"year",$ending))

Once the VDL is written, it needs to be tested to determine if it detects correctly. The macro
is placed in “head.vdl” with no carriage returns or other Windows-type values in the data
string, such as “\x0d\x0a” (carriage return). Any superfluous values of this type will cause the
VDL to miss its intended target. Always work macros in a text file, never in a Windows-type
word program.

Once the macro is in “head.vdl” in the correct format, the macro can be incorporated into a
VDL and a test can be run.

F,~~”This product can do in “,$time,~~”what other products could take “,$time,~~”to do!”#

VSTK Manual 5th Edition 286 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

If the VDL detects its intended target on the first test, the next challenge can be taken on.
However, if a “parse error” is detected, the VDL and macro will need to both be re-evaluated
for structure. A “parse error” is an error in syntax, or the language structure used in the
creation of VDLs and macros.

If VFind is reading a VDL and can't understand its logic, it will stop functioning and return an
error message that indicates where the error lies. Start with a VDL. Make sure that its syntax
is correct, and that all necessary punctuation, spacing, etc, are present. If no obvious errors in
the VDL can be found, then look at the macro. Make sure the syntax is correct, that commas
are around the jumps, quotes around the data strings, etc. Once satisfied that all errors have
been corrected, re-test. Repeat this procedure until either the VDL works or a different way of
achieving the same end has been figured out.

Macros can be very versatile. Some macros can be made using other macros or a VDL can
contain several different macros at once. However, if a macro is made out of only macros, the
new macro may not run correctly because (1) the information in it contains too many variables
and (2) unintended errors may creep in. It is best to use a combination of macros and data
strings and jumps to break up the macros. (The macros below have been “illustrated” with
characters--usually macros of this type would be written in hex for clarity)

Subject:LivE-AcTiOn @ |)U|_+ PoRnO!!!
Subject:LIVe-ACTIon /-\D|_|lT PorNO!!!

$define adultsp $letterA,@-3,$letterD,@-3,$letterU,@-3,$letterL,@-3,$letterT
where:
$define letterA{"Aa@4"}
$define apunc"/\" | "/-\"
$define A$apunc|$letterA
$define letterD{"Dd"}
$define dpunc"|)"
$define D$dpunc|$letterD
$define letterU{"UuVv"}
$define upunc"|_|"
$define U$upunc|$letterU
$define letterL{"Ll1!|:I"}
$define lpunc"|_"
$define L$lpunc|$letterL
$define letterT{"Tt+"}

P,$subject,.*,~”Live-Action”,@-3,$adultsp,@-3,~”Porno!!!”#

VSTK Manual 5th Edition 287 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

In this example, the macros written $letterX represent characters normally found on a
QWERTY keyboard which could be used to represent the letter in question. The $Xpunc
macros are made up of punctuation marks which, when combined, can “imitate” the letter in
question. The macros written as $X are a combination of the first two macros. In this way, a
word can be written with regular characters or with “made-up” characters, as seen in the
example above.

Macros can be used to represent a data string that VFind might otherwise have trouble loading
due to punctuation issues. Since CVDL uses punctuation marks such as $ (macro), “ ” (data
string), # (end of VDL), comma (end of VDL name), etc, some macros must be created to deal
with this issue. Macros can be written as-is, using cut/copy-and-paste techniques from a text
document or free typing. They do not have to be written with hex code in place of CVDL
characters and punctuation marks like a VDL would. Therefore, they eliminate a lot of the
“grunt” work of writing a VDL. Macros can be used to represent a data string that is
commonly used over and over again. In “scam spam”, for example, certain terms are used
which can be found in multiple formats.

Email 1
The amount is $120 million (ONE HUNDRED AND TWENTY MILLION UNITED
STATES DOLLARS) deposited as family treasurein a reputable Security firm Abroad.

Email 2
We decided to contact you due to the urgency of this claims as we discovered an abandoned
sum of US$20,000,000.00 (Twenty Million Dollars) in an account that belongs to one of our
foreign customers who died along with his entire family in a plane crash.

To create VDLs for individual emails, the time per VDL could be shortened by using a macro
in place of the sum (see chapter 7). Therefore, this could be used :

Email 1
$120 million (ONE HUNDRED AND TWENTY MILLION UNITED STATES DOLLARS

Email 2
US$20,000,000.00 (Twenty Million Dollars) These would turn into:
(~~"MILLION UNITED STATES DOLLAR")(~~"MILLION",@-5,~"DOLLAR")
ORW1,(“US”|”\x24”|”USD”),WP1,$d[1-2],”\x2e”,@-15,~"Million"
ORW1,(“US”|”\x24”),WP1,$d[1-2],”\x2e”,”000,00”,WP1

It is best to use “dollar” instead of “dollars” to accommodate the poor spelling usually found
in spams. As a result the VDLs will look like this

$define moola("US"|”\x24”|”USD”),WP1,$d[1-2],@-6,
("M"|~"million"|(”\x2e”,”000.00”)), WP1
$define million(~~"MILLION UNITED STATES DOLLAR")(~~"MILLION",@-5,
~"DOLLAR")

VSTK Manual 5th Edition 288 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

It could even be decided to get real fancy and cover all bases at once.

$define bigbucks$moola|$million

Now by combining chapters three and four with this chapter, the resources are now available
to use macros to detect spammer spelling. For example, this may be seen:

Thank you for using PA Direct for yourfinÅncial needs.

Or

Our thanks to you and your family for using PA Direct for yourf|na|\|Çë$.

Even though each spelling is different, there is still a pattern to be recognized. The same root
word, “financ”, is present, and misspelled, in all cases. Therefore, this misspelled keyword
can be used, aided by macros, in a VDL. So it is time to go over them and see how macros
can be used in each case.

R,NOT (W1,~"financ",(“ing”|”e”|”ial”)) AND({"FF"},$letterI,$N,$A,$N, $letterC, (~“ing”|
~”e”|~”ial”))#

In these samples, there are no spacing issues, just the use of non-standard characters to spell
the word. Since it was misspelled once, it could be done again, so provisions could be made
for this. The existing macros for these letters include the hex code for similar-looking ASCII
characters ($letterX) and similar-looking characters made up of punctuation marks ($xpunc).
When combined ($X), they cover every way of corrupting a word by using character
substitution alone.

R,(W1,~"financ",(“ing”|”e”|”ial”)) AND ({"FF"},$nspo[0-1],$letterI,$nspo[0-1], $N,$nspo[0-
1],$A,$nspo[0-1],$N,$nspo[0-1],$letterC,$nspo[0-1])#

In this VDL, the possible future problem of a combination of non-standard characters
interspersed with punctuation marks is being addressed. The macro $nspo stands for “no
spaces, punctuation only”. The range operator [0-1] means that there could be either one or no
punctuation marks present. This range could always be modified if more than one punctuation
mark is used between letters.

R,NOT (W1,~"financ",(“ing”|”e”|”ial”))AND ({"FF"},@-1,$letterI,@-1,$N,@-1,$A,
@-1,$N,@-1,$letterC,@-1,($letterE|$letterI)#

VSTK Manual 5th Edition 289 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Now it is time to deal with the possibility of both spaces and punctuation marks being used
between letters. This format is a bit tricky to use because of the potential of a false-hit on a
different word or set of words that would accidentally fit into this combination of letters,
spaces, and punctuation. Also note that the entire set of word endings were not captured with
macros. Oftentimes just using the root word can work, if it is uncommon enough. However,
this format should never be used for short, common-sounding root words, since this will
almost certainly result in false hits.

R,NOT ~"financ",(“ing”|”e”|”ial”)) AND ({"FF"},$a[0-1],$letterI,$a[0-1],$N,$a[0-1],$A,
$a[0-1],$N,$a[0-1],$letterC,$a[0-1],($letterE|$letterI)#
R,NOT ~"financ",(“ing”|”e”|”ial”)) AND ({"FF"},$d[0-1],$letterI,$d[0-1],$N,$d[0-1],$A,
$a[0-1],$N,$d[0-1],$letterC,$d[0-1],($letterE|$letterI)#

Sometimes the spammer inserts random numbers or letter into a work to fool the lexical
scanners. In this case, either add the macro for random letters ($a) or random numbers ($d).
They are ranged from 0-1 character between each letter, which will allow for the spammer
changing tactics by inserting letters or numbers at random points in the word.

R,NOT ~"financ",(“ing”|”e”|”ial”)) AND ({"FF"},$r[0-1],$letterI[1-3],$r[0-1],$N[0-1],$r[0-
1],
$A[0-1],$r[0-1],$N[0-1],$r[0-1],$letterC[0-1],$r[0-1],($letterE[0-1]|$letterI[0-1])#

Layering VDL on VDL becomes necessary as the spam becomes more complicated. In this
one, the VDL is allowing for any variations in the letters, or the number of identical letters, in
the word and any inserted letters or numbers (with a new macro, $r, which is made up of $a
and $d). However, this still may not be enough protection.

R,NOT ~"financ",(“ing”|”e”|”ial”)) AND ({"FF"},WP0,$r[0-1],WP0,$letterI[1-3],WP0,
$r[0-1],WP0,$N[0-1],WP0,$r[0-1],WP0,$A[0-1],WP0,$r[0-1],WP0,$N[0-1],WP0,
$r[0-1],WP0,$letterC[0-1],WP0,$r[0-1],WP0,($letterE[0-1]|$letterI[0-1])#

This VDL has gone far enough. It would require a lot of false-hit testing, but if it passes, a
VDL can be created that is so versatile it could almost walk a dog. Provisions have been made
for letter substitutions and repetitions in a word, number or letter insertion into a word, and
space and punctuation mark insertion into the word either before or after any random
characters.

VSTK Manual 5th Edition 290 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Chapter Six: Foreign Language Spam

Analyzing spam written in a foreign language has its own set of challenges. While the same
general principles apply, such as using a url for a VDL, etc, the differences in text characters
can make this process just a little more difficult at the outset.

Initially, the subject line could be used, or a convenient url in the body of the email. Be
careful, however, to avoid using the case-insensitive tilde, since this might change the entire
meaning of the VDL and will not significantly help in detecting other spam email of a similar
type. Also, appearance of the subject can change depending upon which browser is being
used. For example, on a browser run on linux the subject line

=3D?windows-1251?B?ys7QzsvFwtHKyMUgyMPQ2y3Lxc3Kzsw=3D?=3D

actually looks like

??????????? ????-??????

because the Linux browser can't handle these characters properly. So use the subject line in
the email, not the browser window.

Time to take a look at an actual spam email. Notice that there is an email address at the end of
the “from” line. This could be used for a VDL but it would be a short-lived one, probably
restricted to this particular emailing. Plus, it should be prefaced with the $from macro in order
to make it clear that this is the sender, not just some random email address found in a spam
email. The subject line is a better choice, since this will not change as often as the sender's
email address. Be sure to avoid using the case-insensitive tilde function since different cases
of letters may mean different things in another language.

Aj9K8xsKn023554
for <webmaster@cyber.com>; Thu, 20 Oct 2005 04:59:58 -0400
Message-ID: <499f01c5d552$522787bc$9a24f41d@takas.lt>
From: =3D?windows-1251?B?wc7L3NjOySDSxcDS0A=3D=3D?=3D <bag@takas.lt>
To: webmaster@cyber.com
Subject: =3D?windows-1251?B?ys7QzsvFwtHKyMUgyMPQ2y3Lxc3Kzsw=3D?=3D
Date: Thu, 20 Oct 2005 08:41:52 +0000
MIME-Version: 1.0
X-Priority: 3
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook Express V6.00.2900.2180
X-MimeOLE: Produced By Microsoft MimeOLE V6.00.2900.2180
Content-Type: multipart/related;
type=3D"multipart/alternative";
boundary=3D"----=3D_NextPart_000_0000_D66FE558.5E29D52A"

VSTK Manual 5th Edition 291 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

G,$subject,”=3D?windows-1251?B?ys7QzsvFwtHKyMUgyMPQ2y3Lxc3Kzsw=3D?=3D”

To use a subject line for a VDL, it will need to be evaluated for CVDL related characters.

Subject: =3D?windows-1251?B?ys7Q#sv\FwtHKyMU$yMP;;2y3Lxc

This VDL could give VFind trouble. During the scan, VFind would find the pound sign (#)
and would treat it as an end of statement or as a parse error, since there is no end quote before
it. It could also find the “$” and stop scanning because it can't find the macro that should go
with it. Or it could find the double semicolon (“;;”) and disregard anything that came after it,
since that is what those two characters together mean to VFind. Or it can see the “\” and start
looking for hex code, which will cause a parse error and disrupt a scan. Instead, either avoid
the issue altogether,

G,$subject,”=3D?windows-1251?B?ys7Q”,@-1,”svF”,@-1,”wtHKyMU”,@-1,”yMP”,
@-2,”2y3Lxc”,”=0a”#(“=0a” is the hex value for “line feed” or a “carriage return”)

OR use the hex values for these characters, which will not cause a parse error.

G,$subject,”=3D?windows-1251?B?ys7Q”,”=23”,”svF”,”=5c”,”wtHKyMU”,”=24”,”yMP”,
”=3b=3b”,”2y3Lxc”,”=0a”#

If the body of the email is examined, text like this may be found, which is written in hex
because the characters belong to a font set the browser may not have.

=D2=C5=C0=D2=D0=C0=CB=DC=CD=DB=C5=CF=D0=C5=CC=DC=C5=D0=DB (O95)
=517-8=C7-O8(O95)2O2-86-89
=C7=E0=EA=E0=E7, =E1=F0=EE=ED=E8=F0=EE=E2=E0=ED=E8=E5=E8
=E4=EE=F1=F2=E0=
=E2=EA=E0 =E1=E8=EB=E5=F2=EE=E2 =F1 9.00 - 20.00
=CF=E0=F0=F2=E5=F0, =E0 =F2=E0=EA=E6=E5 =E2=FB=E1=EE=F0
=EC=E5=F1=F2 =
=EF=EE =C2=E0=F8=E5=EC=F3 =E6=E5=EB=E0=ED=E8=FE."=C2=D1=C5
=CA=C0=CA

What could be used out of all this that would be easily recognizable in case a similar email
arrived at a later time? Almost any of the non-English code could be taken, but what it's
saying isn’t known. It could be very common language that would not distinguish this email
from a casual email to a friend. So the first thing to do is look for something familiar, such as
a url, a phone number, or a name. In this case, the VDL could be

G,~~”(O95)2O2-86-89”#

VSTK Manual 5th Edition 292 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

A double-tilde is necessary here in case the spammers try to change the format of the phone
number in another email, since it makes the data string independent of spacing and
punctuation.
Original:(O95)2O2-86-89
New:095-202-8689
095 20286 89
O95-2O2-8689and so on...

Sometimes spammers may try to obscure this kind of information by as using hex values
(signified by the “equals” or the “percent” sign) instead of numbers, like this:

(095) 98=39-65-=376
OR(095) 98%39-65-%376

In this case, all that needs to be done is translate the hex code into numerical values by using
an ASCII table, which can be found easily on the web. Once done, the VDL will look like
this:

G,~~”(095) 989-6576”#

This phone number from another email was translated from hex but the values were actually
non- English characters. It can still be used, but it must be either used verbatim or with jumps
or macros (to make it flexible).

G,”(095) 98=CE-65-=C76”#
ORG,”095”,@-3,”98=CE”,@-2,”65”,@-2,”=C76”#
ORG,”095”,$punct[0-3],”98=CE”,$punct[0-3],”65”,$punct[0-3],”=C76”#

The last VDL uses a macro for any punctuation or spacing. Therefore, this phone number
would be detected even if it was interspersed with periods, dashes, spaces, parentheses, etc or
if it were run together into one contiguous number (hence the “0-3”, where no space or mark
is found).

What to do if a lot of foreign language spam is being seen is to be on the lookout for any
similarities between them.

Say two spam emails have been received whose subject lines seem to to be written in a similar
fashion, as below.

Subject: =?UTF-8?B?RndkOiDQoNCQ0JHQntCi0JAg0KEg0KDQldCa 0JvQkNCc0J
DQptCY?==?UTF- ?B?0K/QnNCYLiAg0JLQkNCoINCi0J7QktCQ0KAgLSDQo9
Ch0JvQo9CT?= =?UTF-8?B?0JA=?=

Subject: =?UTF-8?B?RndkOiDQotCV0JvQldCk0J7QndCd0KxJ0JUg0J/QldCg0J Xqk9Ce?
==?UTF-8?B?0JLQnlDQrEk=?=

VSTK Manual 5th Edition 293 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Line up the two subject lines, and the similarities might be seen which could other wise
escape simply “eyeballing” them in their original form (both lines have been truncated
for ease of reading).
Subject: =?UTF-8?B?RndkOiDQoNCQ0JHQntCi0JAg0KEg0KDQldCa 0JvQkNCc0J
Subject: =?UTF-8?B?RndkOiDQotCV0JvQldCk0J7QndCd0KxJ0JUg0J/QldCg0J

Now, line up the characters in each of the two lines and it is easier to see that they actually
have many of the same character strings in common (similarities are in bold).

Subject: =?UTF-8?B?RndkOiDQoNCQ0JHQntCi0JAg0KEg0KDQldCa0JvQk

Subject: =?UTF-8?B? Rndk OiDQotCV 0Jv QldCk0J7QndCd0KxJ0J ug0J/QldCg0J

Therefore the VDL could look like this:

G,"?UTF-8?B?RndkOiDQo",@-1,"C",@-1,"0J",@-1,"Q",@-2,"C",@-1,"0J",@-6,"0K",@-2,”0”,@-
6, "QldC", @-1,"0J"#

Here is another example of what to look for. The “> ” denotes an attached email and needs to
be removed if the code is to be used as-is.

> =DE=CD=CE=CD=C0 =C8 =C0=C2=CE=D1=DC (=CB=E5=ED=EA=EE=EC,
=C4.=CF=C5=C2=D6=
=CE=C2, =C0.=C1=CE=CB=DC=D8=CE=C2=C0) 23, 28.10 =E8 6, 7.11
>
> =D5=CE=CC=CE =DD=D0=C5=CA=D2=D3=D1 /HOMO EREKTUS/
=CA=CE=CC=C5=C4=C8=DF =
=CE =D1=C2=C8=CD=C3=C5=D0=C0=D5.=CF=D0=C5=CC=DC=C5=D0=C0! (=ED=E0

This one is fairly obvious because, not only is it in all caps, but the term is actually “homo
erectus”. So the VDL could look like this

G,WP1,”HOMO EREKTUS”,WP1#
ORG,”/HOMO EREKTUS/”#
ORG,”=2f”,”HOMO EREKTUS”,”=2f”#

Sometimes the subject lines of repeated waves of spam might start look a little too familiar
after a while. Never fear, this is a good thing. This means that a VDL could be made out of
the subject line. After all, if this is seen,

Subject: USB·Î Â÷µµ ¸¶½Ã°í, Çãºê·Îµµ ¾²°í m
Subject: USB·Î Â÷µµ ¸¶½Ã°í, Çãºê·Îµµ ¾²°í ozwvndms l tszdd
Subject: USB·Î Â÷µµ ¸¶½Ã°í, Çãºê·Îµµ ¾²°í plqosdrs

Then all that needs to be done is this,

VSTK Manual 5th Edition 294 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

G,$subject,” USB·Î Â÷µµ ¸¶½Ã°í, Çãºê·Îµµ ¾²°í”#

and the spammer can add as many random characters as they want to the end of this subject
line, and it won't matter one bit.

Some foreign language spammers actually do the program a favor by having all information in
code instead of text. Frequently it can be seen as:

B4=E7=BD=C5=C0=CC=C1=F8=C1=A4=C7=D1=B3=B2=C0=DA=B6=F3=B8=E9dagao.inf
o

This entire line as-is can be used, as well as the domain name, as the VDL. Or, just use the
domain name itself. Remember, though, only add the $DOM1 macro to a domain name if the
“http://” or an “@” is present, and make the “hexcode” case- and punctuation-sensitive.

G,”=B4=E7=C5=C0=CC=C1=F8=C1=F8=C1=A4=C7=D1=B3=B2=C0=DA=B6=F3=B8=E9
”,
~”dagao.info”#

VSTK Manual 5th Edition 295 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Chapter Seven: Scam Spam

Scam Spam comes in many forms. One is the threat of cutting off service due to some reason
or another, another is an attempt to swindle money out of unsuspecting people. Examine the
example below and see what makes this Scam Spam.

From: Larisa S <larisasosnitskaya1@hotmail.com>

DEAR FRIEND,

MY NAME IS MRS. LARISA SOSNITSKAYA, PERSONAL SECRETARY TO
MR. BORIS MIKHAIL KHODORKOVSKY,THE ARRESTED CHAIRMAN/CEO OF
YUKOS OIL AND BANK MENATEP SPB IN RUSSIA (1) WHO IS PRESENTLY IN
JAIL. I HAVE THE DOCUMENTS OF A LARGE AMOUNT OF FUNDS (2) WHICH HE
HANDED OVER TO ME BEFORE HE WAS DETAINED AND TRIED IN RUSSIA FOR
FINANCING POLITICAL PARTIES (THE UNION OF RIGHT FORCES, LED BY BORIS
NEMTSOV AND YABLOKO, A LIBERAL/SOCIAL DEMOCRATIC PARTY LED BY
GREGOR YAVLINSKY) OPPOSED TO THE GOVERNMENT OF MR. VLADMIR
PUTIN (3),THE PRESIDENT THEREBY LEADING TO THE FREEZING OF HIS
FINANCES AND ASSETS. NB: YOU CAN READ MORE OF HIS ORDEAL FROM:
(4) http://newsfromrussia.com/main/2005/03/29/58914.html
http://www.interfax.ru/e/B/politics/28.html?id_issue#261041
http://www.nationmaster.com/encyclopedia/Mikhail-Khodorkovsky

AFTER SEARCHING THROUGH THE BOOKS OF YOUR COUNTRY'S
CHAMBERS OF COMMERCE AND INDUSTRIES HERE IN RUSSIA I AM
CONTACTING YOU TO ASSIST ME (5) TO RE-PROFILE THE FUNDS AND
EQUALLY INVEST SAME ON HIS BEHALF. THE TOTAL AMOUNT OF FUNDS TO
BE RE- PROFILLED IS FORTY SIX MILLIONDOLLARS (6) (USD$46,000,000.00)
AND YOU WILL BE PAID 20% FOR YOUR MANAGEMENT SERVICES (7).

AS SOON AS I RECEIVE YOUR ACCEPTANCE IN MY PERSONAL EMAIL
ADDRESS (8) thus:larisa-nitskaya@excite.com (9) I WILL SEND YOU THE
NECESSARY DETAILS AND MY IDENTIFICATION.

YOURS SINCERELY, MRS. LARISA SOSNITSKAYA.

NOTE THAT ANY RESPONSE TO THIS EMAIL WILL NOT BE APPRECIATED OR
ANSWERED PLEASE WRITE ME VIA MY PERSONAL EMAIL ADRRESS thus:larisa-
nitskaya@excite.com FOR FUTURE CORRESPONDENCE. (10)

VSTK Manual 5th Edition 296 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Okay, now, by the numbers...

1) Russia. More often it’s from Nigeria or Sierra Leone or some other place where it’s not
easy to check the veracity of the situation.
2) A large amount of funds. Here’s the hook...
3) OPPOSED TO THE GOVERNMENT OF MR. VLADMIR PUTIN. This is an
attempt to sound legitimate by injecting one piece of “reality” in what is otherwise a
ridiculous story.
4) NB: YOU CAN READ MORE OF HIS ORDEAL FROM: An attempt to provide a
framework for this pack of lies.
5) AFTER SEARCHING THROUGH THE BOOKS OF YOUR COUNTRY'S
CHAMBERS OF COMMERCE AND INDUSTRIES HERE IN RUSSIA I AM
CONTACTING YOU TO ASSIST ME Gee, didn’t know that this was the Chamber of
Commerce listing or any major industry that would matter in Russia! And always being
contacted by complete strangers from another country with huge sums of money!
6) FORTY SIX MILLION DOLLARS Interested now?....
7) YOU WILL BE PAID 20% FOR YOUR MANAGEMENT SERVICES Wowee!!! Now
it is known how they’re going to draw their victim into this thing. Good old fashioned greed!
8) AS SOON AS I RECEIVE YOUR ACCEPTANCE IN MY PERSONAL EMAIL
ADDRESS Here’s where they start setting the victim up. Contact them with personal
information, and they’ll spring their little scam.
9) larisa-nitskaya@excite.com. Oops, check this out....this email address is not the same as
the one at the top of the email. This email addy is the real one; the “from” address is there to
complain to, since it doesn’t go anywhere.
10) NOTE THAT ANY RESPONSE TO THIS EMAIL WILL NOT BE APPRECIATED
OR ANSWERED PLEASE WRITE ME VIA MY PERSONAL EMAIL ADRRESS
thus:larisa-nitskaya@excite.com FOR FUTURE CORRESPONDENCE. Same as the
other address? It goes nowhere!

Scamspams like the one above will always sport a legitimate-sounding email address. Gone
are the <osxlfonj@korea.com> or “From: Osbert Humperdinkel”. They’ll use monikers like
the ones below.

:X,(~"willcoxwill@web.de") OR (~"Williamcox26@hotmail.com")#

These people are out to scam others out of hard-earned cash, and they’ll sound as pitiful as
they can or offer a deal that just can’t be refused to get it. They are relying on two human
qualities that exist in abundance—greed and gullibility. The above sample illustrated the
greed part.

Time to examine this email by the numbers as previously done in the manual (HTML has been
edited out as deemed necessary to shorten email).

VSTK Manual 5th Edition 297 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

From service@paypal.com(1) Tue Oct 11 23:05:38 2005
Return-Path: <www@jk-adm.jk.nl>(2)
Received: (from uucp@localhost)
<headers clipped>
Received: from jk-adm.jk.nl(3) (jk-adm.jk.nl [213.247.62.239])(4)
<headers clipped>
Date: Wed, 12 Oct 2005 03:05:38 GMT
Message-Id: <200510120305.j9C35cRc028404@jk-adm.jk.nl>
To: doodah @cyber.com
From: "PayPal Inc." <service@paypal.com>(5)
Subject: Your PayPal Account Could Be Suspended(6)

PayPal <href="https://www.paypal.com/us" > <IMG
src="http://images.paypal.com/en_US/i/logo/email_logo.gif" alt="PayPal"
border="(7)0">

Your Billing Information

Dear PayPal Member,(8)

It has come to our attention that your PayPal Billing Information records are out of date. That
requires you to update the Billing Information. Failure to update your records will result in
account termination.(9a) Please update your records within 24 hours.

Once you have updated your account records, your PayPal session will not be interrupted and
will continue as normal. Failure to update will result in cancellation of service, Terms of
Service (TOS) violations or future billing problems.(9b)

You must click the link below and enter your login information on the following page to
confirm your Billing Information records.

<a target="_blank" href="http://62.111.138.7/us/Account_verification /webscr-
cmd=_login/">Click here to activate your account(10)

You can also confirm your Billing Information by logging into your PayPal account at

https://www.paypal.com/us/>.(11)

Thank you for using PayPal!
The PayPal Team

Please do not reply to this e-mail(12). Mail sent to this address cannot be answered. For
assistance,<a target="_blank" href= "http://62.111.138.7/us/Account_verification/webscr-
cmd=_login/"> login to your PayPal account and choose the "Help" link in the footer of any
page.

VSTK Manual 5th Edition 298 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

To receive email notifications in plain text instead of HTML, update your preferences <a
target="_blank" href="http://62.111.138.7/us/ Account_verification/webscr-cmd=_login/"
>here.(13)

<img src="http://images.paypal.com/en_US/i/scr/pixel.gif"
PayPal Email ID PP468
<img src="http://images.paypal.com/en_US/i/scr/pixel.gif"

Protect Your Account Info

Make sure you never provide your password to fraudulent websites(14). To safelyand
securely access the PayPal website or your account, open a new web browser (e.g. Internet
Explorer or Netscape)(15) and type in the PayPal URL (https://www.paypal.com/us/)(16)
to besure you are on the real PayPal site. PayPal will never ask you to enter your password in
an email.

For more information on protecting yourself from fraud, please review our Security Tips at
https://www.paypal.com/us/securitytips
<imgsrc="http://images.paypal.com/en_US/images/pixel.gif"

Protect Your Password
You should never give your PayPal password to anyone, including PayPal employees.<img
src="http://images.paypal.com/en_US/i/scr/pixel.gif"

So here is the CyberSoft analysis:

1) From service@paypal.com Looks legitimate, doesn’t it? Well, it’s not. Most businesses
do not refer people to “service@”--there is usually a name contact used.
2) Return-Path: <www@jk-adm.jk.nl> This email address isn’t the same as the first
one. Could it be the email address of...SPAMMER???
3) Received: from jk-adm.jk.nl Yes, actually, it could be. This is the lowest sender
in the header queue, which means it’s the originator of the email.
4) (jk-adm.jk.nl [213.247.62.239]) The IP address (in brackets) and the domain name
before it are inside the same parentheses; this means that the receiving computer’s
DNS lookup has determined that these two entities go together.
5) From: "PayPal Inc." <service@paypal.com>Same issue as (1). Also, Paypal never
calls itself “Paypal Inc.”
6) Subject: Your PayPal Account Could Be Suspended Typical alarmist subject.
This type of spam tries to scare the victim into doing what the spammer wants.
7) <IMG src="http://images.paypal.com/en_US/i/logo/email_logo.gif"alt="PayPal"
border The nerve of some people. They even use the legitimate PayPal logo on their
scammail!
8) Dear PayPal Member, Paypal will refer to the user by their username when it sends
directed emails, or if its a bulk mailing, it won’t use any salutation at all.

VSTK Manual 5th Edition 299 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

9) Failure to update your records will result in account termination. and Failure to
update will result in cancellation of service, Terms of Service (TOS) violations or future
billing problems. Here’s where they set their victims up. Fear of problems with their
account. NOW they’ve got the user’s attention!
10) <a target="_blank" href="http://62.111.138.7/us/Account_verification /webscr-
cmd=_login/"> Click here to activate your account. Does this look like PayPal’s url? No?
Well, good, because here is the VDL!” X,$DOM1,”32.111.138.7/”#
11) You can also confirm your Billing Information by logging into your PayPal
account at
https://www.paypal.com /us/>. Funny how the link to their PayPal Billing
Information looks an awful lot like the fraudulent url above...only this time they’re
using a redirect to make it look like the link goes to PayPal. Very sneaky...and
quite common in spamscams

Numbers 12-16 are actually parts of a legitimate PayPal email format—just to make it feel like
this is “the real thing”. Don’t use anything below here in a vdl!

(12) Please do not reply to this e-mail because the ”from” address doesn’t lead anywhere.
Only the url in the body of the email is legitimate.
(13) update your preferences here.
Gee, we’ve been here before...just another way of getting the victim to the same bogus site.
(14) Make sure you never provide your password to fraudulent websites Of course they’re
not asking for a password. Just every other important personal piece of information people
may be willing to give them!
(15) new web browser (e.g. Internet Explorer or Netscape) because these two browsers
have incredible security holes and the spammer has a better chance of getting away with his
scam.
(16) PayPal URL (https://www.paypal.com/us/) to besure you are on the real PayPal site
This is how they lull victims into false confidence, because this really IS the true PayPal site!

As pointed out in the sample above, spammers often use email addresses that include words
like “service@scamees.com” to obscure the sender’s identity. However, some of these
“usernames” are very commonly used in business, such as “support@” and “help@”, so ways
to be more specific without missing the mark altogether must be found.

From service@eBay.com Sun Jun 26 08:18:51 2005
From: "Account Service" <service@paypal.com>
Reply-To: <service@bankofthewest.com>

In each of these cases, the same “username” is used in front of the spoofed domain name. By
creating a macro, VDLs can be made that will use the same data stream to catch several
different spams.

VSTK Manual 5th Edition 300 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

From service@bankofthewest.com Wed Dec 31 19:00:00 1969
From: "Account Service" <service@paypal.com>
X,”From”,.*,~”service@”,$scamees,~”.com”#

In this case, the macro being used is “$scamees”, which is a list of agencies which have been
spoofed, including Paypal, Bank of the West, eBay, and a score of others. As long as the basic
structure of this part of the email remains the same, a VDL will detect it no matter which
“scamee” is being used.

Then again, some email addresses are obvious fakes.

:X,~"staff-depart.gov@parttime-job.us"#a double domain name as an email?
:X,"<113.568..2.56@hotmail.com>"#IP address doesn’t exist—module can’t be above 565
:X,$from,.*,~"phishing@"#another name for scamspam
:X,~"phoneseller@yahoo.com"#thanks for the warning!
:X,~"pay2pal1@hotmail.com"#it’s not PayPal and it shouldn’t be on hotmail
:X,~"<confirm@ebay.com>"#eBay always uses the capital B. subtle, but effective
:X,$DOM1,~"paypal.com@paypal_com.lx.ro/PayPal in Romania? NYET!
us/cgi-bin/login.html"#

And then there are the ones that knock everyone silly.

:X 01886,~~"I'm an attorney, And I>>know>>(yeah, right!) the law. This thing is for real."
AND ~~"Please do not take this for a junk letter. Bill Gates is sharing his>>fortune."#

Scam Spam is just like other spam in one way—it likes to use misspellings to appear
legitimate when it is actually bogus. Some examples of this can be seen in the next VDLs,

:X,(~"securtiy@"|~"suport@"|~"baking@")#
:X,$subject,.*,"Fraud Aleqf"#

Now, unless they’re trying to scam a bakery, using “From: <baking@westmill.com> won’t be
of much use to them. Likewise, most people are not going to be overly concerned about a
“Fraud Aleqf”. Spammers rely on the fact that most people don’t pay attention that closely to
headers, so that’s where they hide their “tags”.

Those who write scamspam usually use a “standard” format. That is, certain emails will bear
a great resemblance to others in what they include within the body of the message.

Let’s examine humanitarian scams, for example. There is always a plea for assistance with a
financial matter, appealing to both the best and worst in all of us. There is the heartbreaking
situation of the writer coupled with a large sum of money, a request for urgency or
confidentiality, and a promise of a large “reward” for helping them.

VSTK Manual 5th Edition 301 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

The request almost always comes from some out-of-the-way place where the writer’s claims
would be difficult, if not impossible, to verify through standard inquiries.

Many of these scams involve the death of a either the writer or a third party. The writer might
ask someone to stand in as the deceased’s representative, even though the writer has never met
the victim..Therefore, macros can be started here.

$define scamrepW1,(~~"next of kin" |~"beneficiary"|~"relative"|~"representative"),WP1

The case-insensitive double-tilde function may be used wherever necessary, such as with
“next of kin”. This macro can be added to as necessary to cover other “representatives” as
needed as this type of email evolves into other scams. This scam may involve having to move
a large sum of money into the US. Therefore, another macro may cover this matter.

$define bigbucks("US",@-2,"\x24",@-3,$d[1-3],"M",WP1)|("\x24",@-15,~"Million")|
(~~"MILLION",@-5,~"DOLLAR")|(~~"MILLION UNITED STATES DOLLAR")| ("\x24",
$d[1-3],@-3,~"million",WP1)

In this example, there are various permutations of “million US dollars”, since these scams
seldom deal with trifling sums. This macro can be used alone or with a numerical function or
dollar sign (in hexcode) to do its job. And since there is frequently an offer of “reward” for
assistance, another macro can be added if desired.

$define reward (~”% of“,W1,(~”the”|~”this“|~”these”),W1,(~”sum”|~”money”|~”funds ”))|
(“% for your”,W1,(~”effort”|~”time”))

Since these emails usually originate from Africa or another country, a macro can be created to
detect this, too.

$define place~"Cote D'lvoire"|~"Africa"|~"Zimbabwe"|~"Sierra Leone"|~"Ivory Coast"|
~"Nigeria"|~"London"|~"Bahamas"

These requests are always couched in terms of extreme immediacy and secrecy, so another
macro may be created to cover this eventuality.

$define nowsecret ~”urgent”|~”secrecy”|~”confidential”|~”immediate”|~~”risk-free”|
~”secret”|~~”private email”|~~”personal email”

Of course, there are always differences between these scam emails, so, having isolated some
of the commonalities, the particulars can now be addressed. In this way, the following VDL
may be created:

 :X,$scamrep AND "dormant account" AND $place AND $nowsecret AND $reward#

VSTK Manual 5th Edition 302 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

These type of macros can be used for any type of scamspam as long as the commonalities can
be spotted between them. Even the “threatening” types of scamspam can be detected in this
way, by focusing on things like:

the return email address“<sevice@”,”<Message@”,”<accts@”, etc.
the manner of address“Dear (valued customer, friend, member),”
the subject of the email“Youraccount may be suspended”,
“Your order status”
“Important Online Access Agreement Update!“
the reason for the email“attempts to access your account”,
“billing information needs to be updated”,
“recent security upgrade requires us to update your
account information”
instructions, coupled“click here”,@-30,$website
with a website macro“click on this link”,@-100,$website
“access your account here”,@-50,$ipaddr

VSTK Manual 5th Edition 303 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

TABLE 1: MACROS HEAD.VDL

Not only are these macros tested and ready to use but by studying them a great deal can be
learned about how to effectively use macros and even stack macros for complex patterns.
Word wrap and formatting is a function of the word processor and not intended as part of the
macro source code.

;; *** Macros ***Must be used in text format ONLY!!!
<"limit=50000","text">

VSTK Manual 5th Edition 304 of 343

Name Definition
;; time
$define time (~"second"|~"minute"|~"hour"|~"day"|~"week"|~"month"|~"year")

;all time references

$define day

;; punctuation

$define punct
;all punctuation

$define nspo
;no spaces punctuation only

;; price

$define price
;prices

$define pricebb (WP1,{"\x24","£•?¢??","SwF"},@-2,{"1234567890.,"}[1-4],WP1)
;non-US prices

$define usprice ({"\x3f"}[0-1],{'0'-'9'}[0-3],"\x2e",{'0'-'9'}[0-2],{"\x3f"}[0-1])
;US price

$define currency
;words for common currency used in spam/scam emails

$define centsp W1,{"0"}[0-1],"\x2e",('0'-'9')[0-2],W0,{"\x24\x9c"},WP1
;small change numeric

$define pcents
;small change punctuation

$define cents $pcents|$centsp
;all small change references

$define bucks $million|$thousand|$hundred|$cents
;all large sums of money

$define smchg (W1,(~"cent"|~"penny"|~"nickel"|~"dime"|~"quarter"|~"dollar"|~"buck"),WP1)
;words for small currency amounts

(~"Monday"|~"Tuesday"|~"Wednesday"|~"Thursday"|~"Friday"|~"Saturday"|~"Sunday"|~"Mon."|
~"Tues."|~"Wed."|~"Thurs."|~"Fri."|~"Sat."|~"Sun.")
;all date references

{"\x21\x23\x24\x25\x26\x7C\x3A\x3B\x3C\x3E\x40\x60\x3F\x27\x28\x29\x2F\x5C\x2A\x2
B\x2C\x2D\x2E\x7E\x20\x5E\x5B\x5D\x7B\x7D\x3D\x5F\x2D\x27\x22\n"}

{"\x21\x23\x24\x25\x26\x7C\x3A\x3B\x3C\x3E\x40\x60\x3F\x27\x28\x29\x2F\x5C\x2A\x2
B\x2C\x2D\x2E\x7E\x5E\x5B\x5D\x7B\x7D\x3D\x5F\x2D\x27\x22"}

(WP1,{"1234567890,."}[1-12],@-2,{"\x24","¬£¬•‚\202¨¬¢‚\202£‚\202§","SwF"},WP1) OR (WP1,
{"\x24","¬£¬•‚\202¨¬¢‚\202£‚\202§","SwF"},@-2,{"1234567890.,"}[1-12],WP1)

(WP1,((~"lb",@-3,~"sterling")|(~"pounds sterling")|~"yen"|~"lire"|~"euros"|~"francs"|~"dollars"|
~~"US dollars"|~"United States dollars"),WP1)

W1,{"\x24\x9c"},W0,{"0"}[0-1],"\x2e",('0'-'9')[0-2],
{"\x20\x0a\x2c\x2e\x21\x22\x29\x3f\x27\x4d\x54","\x55\x53"}

VSTK Manual 5th Edition CyberSoft Operating Corporation

VSTK Manual 5th Edition 305 of 343

Name Definition
;; numbers
$define d { '0'-'9' }

;single numbers

$define phone
;random phone number

$define numbers
;all English numbers

$define numberth
 ;teens and nth numbers

$define phundred
;hundreds w/ dollar & cent marks before

$define hundredp W1,('0'-'9')[1-3],{"\x2e"}[0-1],('0'-'9')[0-2],W0,{"\x24\x9c"},WP1
;hundreds with dollar and cent marks after

$define hundred $phundred|$hundredp
;hundreds all ways

$define pthousand
;thousands with dollar and cent marks before

$define thousandp W1,('0'-'9')[1-3],"\x2c",('0'-'9')[3],{"\x2e"}[0-1],('0'-'9')[0-2],W0,{"\x24\x9c"}, WP1
;thousands with dollar and cent marks after

$define thousand $pthousand|$thousandp
;thousands all ways

$define pmillion
;millionswith dollar and cent marks before

$define millionp W1,('0'-'9')[1-3],"\x2c",('0'-'9')[3],"\x2c",('0'-'9')[3],{"\x2e"}[0-1],('0'-'9')[0-2],W0,{"\x24\x9c"},WP1
;millionswith dollar and cent marks after

$define million $pmillion|$millionp
;millions all ways

{'0'-'9'}[1-3],$punct[0-3],{'0'-'9'}[1-3],$punct[0-3],{'0'-'9'}[1-3],$punct[0-3],{'0'-'9'}[1-3],$punct[0-
3],{'0'-'9'}[1-3]

~"one"|~"two"|~"three"|~"four"|~"five"|~"six"|~"seven"|~"eight"|~"nine"|~"ten"|~"eleven"|
~"twelve"|~"thirteen"|~"fourteen"|~"fifteen"|((~"six"|~"seven"|~"eigh"|~nine"),~"teen")|
((~"twenty"|~"thirty"|~"forty"|~"fifty"|~"sixty"|~"seventy"|~"eighty"|~"ninety"),WP0,(~"one"|
~"two"|~"three"|~"four"|~"five"|~"six"|~"seven"|~"eig ht"|~"nine"))

 (~"first"|~"second"|~"third"|~"fourth"|~"fifth"|~"sixth"|~"seventh"|~"eighth"|~"nineth"|~"tenth"|
~"eleventh"|~"twelveth"|~"thirteenth"|~"fourteenth"|~"fifteenth"|((~"six"|~"seven"|~"eigh"|
~"nine"),~"teenth")) OR (~"twentyth"|~"thirtyth"|~"fortyth"|~"fiftyth"|~"sixtyth"|~"seventyth"|
~"eightyth"|~"ninetyth"|~"hundredth"|~"thousandth"|~"millionth") OR ((~"twenty"|~"thirty"|
~"forty"|~"fifty"|~"sixty"|~"seventy"|~"eighty"|~"ninety"),WP0,(~"first"|~"second"|~"third"|
~"fourth"|~"fifth"|~"sixth"|~"seventh"|~"eighth"|~"nineth"))

 W1,{"\x24\x9c"},W0,('0'-'9')[1-3],{"\x2e"}[0-1],('0'-'9')[0-2],
{"\x20\x0a\x2c\x2e\x21\x22\x29\x3f\x27\x4d\x54","\x55\x53"}

W1,{"\x24\x9c"},W0,('0'-'9')[1-3],"\x2c",('0'-'9')[3],{"\x2e"}[0-1],('0'-'9') [0-2],
{"\x20\x0a\x2c\x2e\x21\x22\x29\x3f\x27\x4d\x54","\x55\x53"}

W1,{"\x24\x9c"},W0,('0'-'9')[1-3],"\x2c",('0'-'9')[3],"\x2c",('0'-'9')[3],{"\x2e"}[0-1],('0'-'9')[0-2],
{"\x20\x0a\x2c\x2e\x21\x22\x29\x3f\x27\x4d\x54","\x55\x53"}

VSTK Manual 5th Edition CyberSoft Operating Corporation

VSTK Manual 5th Edition 306 of 343

Name Definition
;; Letters
$define a {"AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz"}

;case-insensitive letters
$define vowl ({"Aa"}|{"Ee"}|{"Ii"}|{"Oo"}|{"Uu"}|{"Yy"})

;case-insensitive vowels

$define cons
;case-insensitive consonants

$define CAPS {'A'-'Z'}
;capital letter

$define lclets {"abcdefghijklmnopqrstuvwxyz"}
;lower-case letters

$define uclets {"ABCDEFGHIJKLMNOPQRSTUVWXYZ"}
;upper-case letters

$define letterA {"\x41\x61\x40\xC0\xC1\xC2\xC3\xC4\xC5\xE0\xE1\xE2\xE3\xE4\xE5\xAA\x34"}
;case-insensitive and non-text A

$define apunc "\x2F\x5C" | "\x2F\x2D\x5C"
;punctuation mark A(/\, /-\)

$define A $apunc|$letterA
;case-insensitive, non-text and punctuation mark A

$define letterB {"\x42\x62\xDF\xFE"}
;case-insensitive/non-text B

$define bpunc "\x7C\x33"
;punctuation mark B(|3)

$define B $bpunc|$letterB
;case-insensitive, non-text and punctuation mark B

$define letterC {"\x3c\x28\x43\x63\x7B\xA9\xA2\xC7\xE7\x80"}
;case-insensitive/non-text C

$define letterD {"\x44\x64\xD0"}
;case-insensitive/non-text D

$define dpunc {"\x7C\x29","\x20\x29"}
;punctuation mark D(|),))

$define D $dpunc|$letterD
;case-insensitive, non-text and punctuation mark D

$define letterE {"\x45\x65\xc8\xc9\xCA\xCB\xE8\xE9\xEA\xEB\x80\x33"}
;case-insensitive and non-text E

$define letterF {"Ff"}
;case-insensitive F

$define letterG {"\x47\x67\x39\x71"}
;case-insensitive and non-text G

$define gpunc "\x28\x2B"
;punctuation mark G((+)

{"\x42\x43\x44\x46\x47\x48\x4a\x4b\x4c\x4d\x4e\x50\x51\x52\x53\x54\x56\x57\x58\x59\x
5a\x62\x63\x64\x66\x67\x68\x6a\x6b\x6c\x6d\x6e\x70\x71\x72\x73\x74\x76\x77\x78\x79\x
7a"}

VSTK Manual 5th Edition CyberSoft Operating Corporation

VSTK Manual 5th Edition 307 of 343

Name Definition
;; Letters
$define G $gpunc|$letterG

;case-insensitive, non-text and punctuation mark G
$define letterH {"\x48\x68"}

;case-insensitive and non-text H
$define hpunc "\x7C\x2D\x7C"

;punctuation mark H(|-|)
$define H $hpunc|$letterH

;case-insensitive, non-text and punctuation mark H

$define letterI
;case-insensitive and non-text I

$define letterJ {"Jj"}
;case-insensitive and non-text J

$define letterK {"\x4B\x6B"}
;case-insensitive and non-text K

$define kpunc "\x7C\x3E"
;punctuation mark K(|<)

$define K $kpunc|$letterK
;case-insensitive, non-text and punctuation mark K

$define letterL {"\x5b\x5d\x4C\x6C\x31\x21\x7C\x3A\xEF\x3B\xA1\xA6"}
;case-insensitive and non-text L

$define lpunc "\x7C\x5F"
;punctuation mark L(|_)

$define L $lpunc|$letterL
;case-insensitive, non-text and punctuation mark L

$define letterM {"\x4D\x6D"}
;case-insensitive and non-text M

$define mpunc "\x7C\x5C\x2F\x7C" | "\x2F\x5C\x2F\x5C"|"\x7c\x56\x7c"
;punctuation mark M(|\/|,/\/\, |V|)

$define M $mpunc|$letterM
;case-insensitive, non-text and punctuation mark M

$define letterN {"\x4E\x6E\xD1\xF1"}
;case-insensitive and non-text N

"\x7C\x3E" "\x7C\x5C\x7C"
;punctuation mark N (|\|)

$define N $npunc|$letterN
;case-insensitive, non-text and punctuation mark N

$define letterO {"\x40\x4F\x6F\x30\xA4\xD2\xD3\xD4\xD5\xD6\xD8\xF2\xF3\xF4\xF5\xF6\xF8\x66"}
;case-insensitive and non-text O

$define opunc "\x28\x29"
;punctuation mark O(())

{"\x49\x69\x31\x3B\x21\xA1\xA6\xCC\xCD\xCE\xCF\xEC\xED\xEE\xEF\x6C\x7C\x3A\x4C
"}

VSTK Manual 5th Edition CyberSoft Operating Corporation

VSTK Manual 5th Edition 308 of 343

Name Definition
;; Letters
$define O $opunc|$letterO

;case-insensitive, non-text and punctuation mark O
$define letterP {"\x50\x70\xDE\xFE"}

;case-insensitive and non-text P
$define letterQ {"Qq"}

;case-insensitiveQ
$define letterR {"Rr"}

;case-insensitiveR
$define letterS {"\x53\x73\x24\xA7\x32\x8A\x9A\x5A\x7A"}

;case-insensitive and non-text S
$define letterT {"\x54\x74\x86\x2B"}

;case-insensitive and non-text T
$define letterU {"\x55\x75\xB5\xD9\xDA\xDB\xDC\xF9\xFA\xFB\xFC\x76"}

;case-insensitive and non-text U
$define upunc "\x7C\x5F\x7C"

;punctuation mark U
$define U $upunc|$letterU

;case-insensitive, non-text and punctuation mark U
$define letterV {"\x56\x76\xA5"}

;case-insensitive and non-text V
$define vpunc {"\x5C\x2F","\x2f"}

;punctuation mark V(\/, /)
$define V $vpunc|$letterV

;case-insensitive, non-text and punctuation mark V
$define letterW {"\x57\x77"}

;case-insensitive and non-text W
$define wpunc "\x5C\x2F\x5C\x2F"|"\x56\x56"|"\x76\x76"|"\x2f\x2f"|"\x7c\x2f\x5c\x7c"

;punctuation mark W(|/\|, VV, //, vv, \/\/)
$define W $wpunc|$letterW

;case-insensitive, non-text and punctuation mark W
$define letterX {"\x58\x78"}

;case-insensitive and non-text X
$define xpunc 3E\x3C"nc"

;punctuation mark X(><)
$define X $xpunc|$letterX

;case-insensitive, non-text and punctuation mark X
$define letterY {"\x59\x79\xA5\xFF\xFD\x9F\xDD"}

;case-insensitive and non-text Y
$define letterZ {"Zz"}

;case-insensitive Z

VSTK Manual 5th Edition CyberSoft Operating Corporation

VSTK Manual 5th Edition 309 of 343

Name Definition
;; grammar
$define capswd WP1,{"ABCDEFGHIJKLMNOPQRSTUVWXYZ"}[3-15],WP1

;capitalized words

$define capswds
;multiple capitalized words

$define nounend
;noun endings

$define verbend $a[0-1],(~"s"|~"es"|~"ed"|~"ing"|""|~"e"),WP1
;verb endings

$define wordend $verbend|$nounend
;all noun and verb endings

$define superla (~"e"|~"r"|~"er"|~"st"|~"est"|""),WP1
;adjective superlatives

$define badadj
;common profane adjectives

$define preverbsoon W1,(~"be"|~"could"|~"would"|~"should"|~"go"|~"to"|~"will"|~"can")
;future-tense verb modifiers

$define preverbpres W1,(~"being"|~"is"|~"am"|~"are"),W1
;present-tense verb modifiers

$define preverbthen W1,(~"have"|~"been"|~"had"|~"was"|~"were"),W1
;past-tense verb modifiers

$define preverb $preverbsoon|$preverbpres|$preverbthen
;all verb modifiers

$define mypronoun W1,(~"my"|~"your"|~"his"|~"her"|~"its"|~"our"|~"their"),WP1
;possessive pronouns

$define mepronoun W1,(~"me"|~"you"|~"him"|~"her"|~"us"|~"them"|~"a"|~"that"|~"those"),W1
;object pronouns

$define ipronoun W1,(~"I"|~"you"|~"he"|~"she"|~"it"|~"we"|~"they"|~"what"),WP1
;subject pronouns

$define pronoun $mypronoun|$mepronoun|$ipronoun
;ultimate combination of all pronouns

$define article WP1,(~"the"|~"a"|~"some"|~"any"|~"all"|~"every"|~"no"),WP0
;random articles

$define ppphrase
;prepositional phrases

$define gibber (0x00-0x40),(0x5b-0x60),(0x6b-0xff)
;gibberish found in spam

$define plural (~"s"|""|~"'s"|~"es")
;case-insensitive plural endings for words

($capswd,@-500,$capswd,@-500,$capswd)|($capswd,@-500,$capswd,@-500, $capswd,@-
500,$capswd)|($capswd,@-500,$capswd,@-500,$capswd,@-500, $capswd,@-500,$capswd,@-
500,$capswd)

$a[0-1],(~"es"|~"er"|~"ers"|~"er's"|""|~"y"|~"ys"|~"y's"|~"ey"|~"eys"|~"ey's"|~"ie"|~"ies"|~"ie's"|
~"ing"|~"ings"|~"ing's"),WP1

(~"fucking"|(~"damn",(~"ed"|""))|~"stupid"|(~"friggin",(""|~"g"|"'"))|~"a bunch of"|~"a batch of"|
~"such"|~"rotten"|~"shitty"|(~"shit",$punct,~"head",(""|~"ed"))|~"crappy"|~"bastard"|(~"shit",
$punct,~"head",(""|~"ed"))|(~"ass",$punct,~"hole")),WP1

WP1,(~"on"|~"to"|~"of"|~"in"|~"into"|~"inside"|~"within"|~"without"|~"with"|~"after"|~"before"|
~"under"|~"over"|~"atop"|~"around"|~"beneath"|~"beside"|~"as"|~"through"),$article

VSTK Manual 5th Edition CyberSoft Operating Corporation

VSTK Manual 5th Edition 310 of 343

Name Definition

$define r {"AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz1234567890"}
;single random characters

$define randchar {"bcdf","BCDF","ghjk","GHJK","lmnp","LMNP","qrst","QRST","vwxyz","VWXYZ"}5-30]
;groups of random letters

$define randcharend
;random letters found at end of spam email

$define rand
;upper/lwrcase letters and numbers

$define allrand
;upper/lwrcase letters, numbers, punctuation

$define allrandsp
;upper/lwrcase letters, numbers, punctuation,spaces

$define anumdashper {'a'-'z','A'-'Z','0'-'9','-','.' }
;letter number/dash/period used in spammer-spelling

$define multibang({"!"}[1-3],@-1000,{"!"}[1-3],@-1000,{"!"}[1-3],@-1000,{"!"}[1-3])
;multiple exclamation points used at intervals in a spam email

;; contest

$define lottotalk
;phrases common in lottery/contest scams and spams

$define contest
;words/phrases used for contest spams and scams

$define ticket
;contest/lotteryticket catch phrases

;; gamble

$define
;case-insensitive words relating to gambling

$define
;case-insensitive and spammer-spelling games

;; characters

{"bcdf","BCDF","ghjk","GHJK","lmnp","LMNP","qrst","QRST","vwxyz",VWXYZ"}[30],@-
30,EOD

{"\x41\x42\x43\x44\x45\x46\x47\x48\x49\x4a\x4b\x4c\x4d\x4e\x4f\x50\x51\x52\x53\x54\x5
5\x56\x57\x58\x59\x5a\x61\x62\x63\x64\x65\x66\x67\x68\x69\x6a\x6b\x6c\x6d\x6e\x6f\x7
0\x71\x72\x73\x74\x75\x76\x77\x78\x79\x7a\x30\x31\x32\x33\x34\x35\x36\x37\x38\x39"}

{"\x41\x42\x43\x44\x45\x46\x47\x48\x49\x4a\x4b\x4c\x4d\x4e\x4f\x50\x51\x52\x53\x54\x5
5\x56\x57\x58\x59\x5a\x61\x62\x63\x64\x65\x66\x67\x68\x69\x6a\x6b\x6c\x6d\x6\x6f\x70\
x71\x72\x73\x74\x75\x76\x77\x78\x79\x7a\x30\x31\x32\x33\x34\x35\x36\x37\x38\x39\x21\
x22\x23\x24\x25\x26\x27\x28\x29\x2A\x2B\x2C\x2D\x2E\x2F\x3A\x3B\x3C\x3D\x3E\x3F\
x40\x5B\x5C\x5D\x5E\x5F\x60\x7B\x7C\x7D\x7E"}

{"\x41\x42\x43\x44\x45\x46\x47\x48\x49\x4a\x4b\x4c\x4d\x4e\x4f\x50\x51\x52\x53\x54\x5
5\x56\x57\x58\x59\x5a\x61\x62\x63\x64\x65\x66\x67\x68\x69\x6a\x6b\x6c\x6d\x6e\x6f\x7
0\x71\x72\x73\x74\x75\x76\x77\x78\x79\x7a\x30\x31\x32\x33\x34\x35\x36\x37\x38\x39\x2
0\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2A\x2B\x2C\x2D\x2E\x2F\x3A\x3B\x3C\x3D\x3
E\x3F\x40\x5B\x5C\x5D\x5E\x5F\x60\x7B\x7C\x7D\x7E"}

(~"CONGRATULATIONS"|(~"Promotion",@-5,~"Program")|~"cash prize"|((~"computer"|
~"internet-based"),@-5,~"ballot")|((~"WINNING"|~"award"),@~"pay-point bank"|~"email lottery
winning"|~"prize winning")-3,~"NOTIFICATION")|((~"lotto"|~"lottery"),@-5,~"international")|
~"Yours in service,"|

WP1,(~"lotto"|~"lottery"|~"contest"|~"e-games"|~"sweepstake"|~"sweepstakes"|~"Loterij"|
(~"promotion",@-3,~"program")),WP1

(((~"lucky"|~"serial"|~"reference"|~"ticket"|~"batch"|~"ref"),@-15,~"number") OR (~"security
code"))

gamble(~"casino" | ~"gamble" | ~"gambling" | ~"poker" | ~W"slot machine" | ~"lotto" |~"bingo" |
~"blackjack")

gamez$letterG,@-3,$letterA,@-3,$letterM,@-3,$letterE,@-3,($letterS | {"Rr"},@-3,$letterS |
{"Rr"})

VSTK Manual 5th Edition CyberSoft Operating Corporation

VSTK Manual 5th Edition 311 of 343

Name Definition
 ;; email headers
$define eml {'A'-'Z','a'-'z','0'-'9',$nspo}[3-30],"\x40",{'A'-'Z','a'-'z','0'-'9',$nspo}[3-30],$DOM3

;email address
$define reply ("\nSend reply to","\x3a\x20\x22"|"\nReply-To","\x3a\x20\x22")

;email header Reply-Tos
$define subject \nSubject","\x3a\x20

;email header Subject line
$define from \nFrom","\x3a\x20",{"\x22"}[0-1]

;email header From line
$define headto “\nTo","\x3a\x20",{"\x22"}[0-1]

;email header To line
$define recd "Received",":",W1,"from","\x20

;email header Received line
$define nuline ("\n"|"\r\n")

;email header "new line" to end contents in a given line
$define goodip {'0'-'9'} OR ({'1'-'9'},{'0'-'9'}) OR ('1',{'0'-'9'},{'0'-'9'}) OR ('2',{'0'-'5'},{'0'-'5'})

;good IP address numbers (to be used with periods between each goodip)

;; coding

$define htmlcode
;key html code pieces

$define white (~"FFFFF",{0x41-0x46,0x61-0x66,0x30-0x39}[1]) | ~~"color=white"
;color white for background (can be used with white font)

$define graphic
;questionable graphics in spam emails

$define wht1 (~"<font ",@-12,~"color=","\x22",~"White")|(~"font ",@-12,~"color=","\x22",~"#FFFFFF")
;white font

$define red ("font ",@-12,~"color=","\x22",~"#FF0000")|("<font ",@-12,~"color=","\x22",~"Red")
;red font

$define spamhex ("\x25"|"\x3d"),{"AaBbCcDdEeFf0123456789"},{"AaBbCcDdEeFf0123456789"}
;hex used in spam emails

;; people

$define galsp
;mispelled females/prostitutes

$define gal1 (~"woman"|~"women"|~"girl"|~"mom"|~"wife"|~"wives"|~"lady")
;females

$define gals ($gal1|$galsp)
;all females

$define mate (~"husband"|~"partner"|~"paretnr"|~"parnetr"|~"spouse"|~"lover"|~"boyfriend"|~"fiance")
;males

$define partner ((~~" bi female",(~"s"|WP1)) | (~" gay ",.*,(~"guy"|~"gal"|~"girl"))| ~~"singlegay")
;bi/gay person

$define female
;mispelled and slanf females

~"#000080"|~"#ff0000"|~"#0000ff" |~"" |~"#ff6600" | ~"#00ff00" |~"#ffff00" |~W"COLOR:
RED"

~".tiff"|~".jpg" | ~".gif" | ~".bmp" | ~W"Please wait for message to load, it may take a few seconds"
| ~".jpeg" | ~".jpe" | ~".jfif" | ~".png"

(~"Posrtitute"|~"prostitute"|~"Porstitute"|~"housewire"|~"wmoen"|~"MILF"|~"Mheotr"|~"Mmos"|
~"Mhoter"|~"Mmomy"|~"Weomn"|~"Mhoetr"|~"Wemon")

~"girl" | ~"g1rl" | ~"gurl" | ~"g√Ærl" | ~"woman" | ~"female" | ~"dame" | ~"chick"| ~"women" |
~"Blondes" | ~"Brunettes" | ~"Babes"

VSTK Manual 5th Edition CyberSoft Operating Corporation

VSTK Manual 5th Edition 312 of 343

Name Definition
 ;; email headers
$define eml {'A'-'Z','a'-'z','0'-'9',$nspo}[3-30],"\x40",{'A'-'Z','a'-'z','0'-'9',$nspo}[3-30],$DOM3

;email address
$define reply ("\nSend reply to","\x3a\x20\x22"|"\nReply-To","\x3a\x20\x22")

;email header Reply-Tos
$define subject \nSubject","\x3a\x20

;email header Subject line
$define from \nFrom","\x3a\x20",{"\x22"}[0-1]

;email header From line
$define headto “\nTo","\x3a\x20",{"\x22"}[0-1]

;email header To line
$define recd "Received",":",W1,"from","\x20

;email header Received line
$define nuline ("\n"|"\r\n")

;email header "new line" to end contents in a given line
$define goodip {'0'-'9'} OR ({'1'-'9'},{'0'-'9'}) OR ('1',{'0'-'9'},{'0'-'9'}) OR ('2',{'0'-'5'},{'0'-'5'})

;good IP address numbers (to be used with periods between each goodip)

;; coding

$define htmlcode
;key html code pieces

$define white (~"FFFFF",{0x41-0x46,0x61-0x66,0x30-0x39}[1]) | ~~"color=white"
;color white for background (can be used with white font)

$define graphic
;questionable graphics in spam emails

$define wht1 (~"<font ",@-12,~"color=","\x22",~"White")|(~"font ",@-12,~"color=","\x22",~"#FFFFFF")
;white font

$define red ("font ",@-12,~"color=","\x22",~"#FF0000")|("<font ",@-12,~"color=","\x22",~"Red")
;red font

$define spamhex ("\x25"|"\x3d"),{"AaBbCcDdEeFf0123456789"},{"AaBbCcDdEeFf0123456789"}
;hex used in spam emails

;; people

$define galsp
;mispelled females/prostitutes

$define gal1 (~"woman"|~"women"|~"girl"|~"mom"|~"wife"|~"wives"|~"lady")
;females

$define gals ($gal1|$galsp)
;all females

$define mate (~"husband"|~"partner"|~"paretnr"|~"parnetr"|~"spouse"|~"lover"|~"boyfriend"|~"fiance")
;males

$define partner ((~~" bi female",(~"s"|WP1)) | (~" gay ",.*,(~"guy"|~"gal"|~"girl"))| ~~"singlegay")
;bi/gay person

$define female
;mispelled and slanf females

~"#000080"|~"#ff0000"|~"#0000ff" |~"" |~"#ff6600" | ~"#00ff00" |~"#ffff00" |~W"COLOR:
RED"

~".tiff"|~".jpg" | ~".gif" | ~".bmp" | ~W"Please wait for message to load, it may take a few seconds"
| ~".jpeg" | ~".jpe" | ~".jfif" | ~".png"

(~"Posrtitute"|~"prostitute"|~"Porstitute"|~"housewire"|~"wmoen"|~"MILF"|~"Mheotr"|~"Mmos"|
~"Mhoter"|~"Mmomy"|~"Weomn"|~"Mhoetr"|~"Wemon")

~"girl" | ~"g1rl" | ~"gurl" | ~"g√Ærl" | ~"woman" | ~"female" | ~"dame" | ~"chick"| ~"women" |
~"Blondes" | ~"Brunettes" | ~"Babes"

VSTK Manual 5th Edition CyberSoft Operating Corporation

VSTK Manual 5th Edition 313 of 343

Name Definition
;; attachments
$define att (~"Content-Type","\x3a",@-50,(~"file"|~"name"),"\x3d\x22")

;precedes attachment name
$define att2 \nContent-Disposition","\x3a\x20",@-20,"file name","\x3d\x22

;precedes attachment name
$define attid (~"Content-ID","\x22")

;precedes attachment name

;; size/quality

$define bigger
;bigger references

$define quality ~"Premium" | ~~"high-quality" |~"best" | ~"greatest"
;quality references

$define increase
;increasing references

$define cheapsp $letterC,@-3,$letterH,@-3,$letterE,@-3,$letterA,@-3,$letterP
;all spellings of cheap

$define cheap1
; low-cost references

$define cheap2
;more inexpensive references

$define cheap3
;even more inexpensive references

$define cheap (($cheap1)|($cheap2)|($cheap3))
;all inexpensive references

;; scam

$define place
;scam location references

;; mortgage

$define mortgage
;references to mortgages

$define finofr WP1,(~"loan"|~"mortgage"|~"lending"|(~"low",@-1,~"rate")),WP1
;finance offer

$define refi
;refinance/refinancing

((~"enhanc"|~"enlarg"),(~"ement"|$verbend))|(~"increas",$verbend)|((~"larg"|~"big"|~"hug),
$superla)|~"enormous"

~"increase" | ~"ncrease" | ~"increasing" | ~"increased" | ~"enlarge" | ~"nlarge" |~"bigger" |
~"larger"

($cheapsp) | ~"inexpensive" | ~"low",@-5,~"price"| ~~"less than cost price" |~~"non expensive" |
~"bargain" | ~"discount" | ~"wholesale"

~"deal" | ~~"off the retail price" | ~~"cut your expenses" | ~~"less expensive" |~~"very budget-
wise prices" | ~~"the greatest prices" | ~~"not highly priced" |(~~"priced for",@1-5,~"workers") |
~"goodbuy" | (~"not",@1-10,~~"you can't afford")

~"specials" | ~~"less costly" | ~"affordable" | ~~"best values" | ~~"opportune to be acquired" |
~~"fantastic prices" | ~~"outstanding deal" | ~~"low cost" | ~~"prices reasonable"

(~"Cote D'lvoire"|~"Africa"|~"Zimbabwe"|~"Sierra Leone"|~"Ivory Coast"|~"Nigeria"|~"London"|
~"Bahamas")

~"Credit" | ~"Home",@-25,~"Loan" | ~"Mortgage" | ~"Refinance" | ~W"Interest Rate" |
~"Refinancing" | ~"Debt" | "j"

(WP1,$letterR[1-3],WP0,$letterE[1-3],WP0,$letterF[1-3],WP0,$letterI[1-3], WP0,$letterN[1-
3],WP0,$letterA[1-3],WP0,$letterN[1-3],WP0,$letterC[1-3]), ($letterE[1-3]|($letterE[1-
3],WP0,$letterS[1-3])|($letterI[1-3],WP0,$letterN[1-3], WP0,$letterG[1-3]),WP1)

VSTK Manual 5th Edition CyberSoft Operating Corporation

VSTK Manual 5th Edition 314 of 343

Name Definition
;; credit

$define guarantee
;guarantrr spelling

$define credit
;credit references

$define creditcard
;credit cards

 $define approved
; approved spelling

$define preapproved $letterP,@-3,{"Rr"},@-3,$letterE,@-3,$approved
;preapproved spelling

$define bankrupt
;bankrupt spelling

$define creditterm $preapproved | $approved | $bankrupt AND $guarantee
;all references to approval, bankruptcy plus guarantee

$define interest ~W"Mortage Rate" | ~W"low rate" | ~W"special Rate"
;interest rate references

$define consolidate
;consolidate spelling

;; stocks

$define stocks
;stock offer references

$define pennystock ($letterP,$letterE,$letterN,$letterN,$letterY,$letterS,$letterT,$letterO,$letterC,$letterK)
;pennystock spelling

$define stoktalk
;stock hype phrases

$define stokbuy
;stock buying phrases

$define smstox
;smallstock references

$define radar
;references to stock/offer radar

$define validsale (~"offer"|~"price"),@-2,(~"are"|~"is"),~~"valid ",(~~"until"|~"from")
;sale offer limits

$letterG,@-3,$letterU,@-3,$letterA,@-3,{"Rr"},@-3,$letterA,@-3,$letterN,@-3,$letterT,@-
3,$letterE,@-3,$letterE

((~"bad"|~"no"|~"poor"|~"low"),WP0,~"credit") OR (~"credit",@-12,(~"not a factor"|~"problems"|
~" not an issue"|~" not important"|~" a non-issue"|~"will not disqualify you"|~"doesn't matter to
us")) OR (~"any credit accepted"|~"Credit history is NOT a factor")

~W"mastercard" |~"visa"|~W"American Express"|~W"Gold Card"| ~W"platinum Card"|
(~"discover",WP1) |~W"credit card" | ~W"Centennial Card"

$letterA,@-3,$letterP,@-3,$letterP,@-3,{"Rr"},@-3,$letterO,@-3,$letterV,@-3,$letterE,@-
3,$letterD

$letterB,@-3,$letterA,@-3,$letterN,@-3,$letterK,@-3,{"Rr"},@-3,$letterU,@-3,$letterP,@-
3,$letterT

$letterC,@-3,$letterO,@-3,$letterN,@-3,$letterS,@-3,$letterO,@-3,$letterL,@-3,$letterI,@-
3,$letterD,@-3,$letterA,@-3,$letterT,@-3,$letterE

(~w"seek advice from a registered" | ~w"lose all your money" | ~"receipt of ten thousand dollars
from a third party" | ~"paid",WP1,\d+,",", \d+,WS1,~"dollars")

((~"CHECK OUT ",@-20,~"TODAY!")|~"Big PR Campaign"|~"Trade at the Top!"|~"get in the
game"|~"undiscovered gem"|(~"hot ",(~"trading"|~"stock"))|~"highly speculative"|~"Get on
board"|~"it will continue to climb"|~"Early Warning"|~"Rising Star Stock"|~"This Stock will rock
tomorrow"|((("G",~"ood")| ("H",~"appy")),@-3,"T",~"rading")|((~"trader"|~"stock"),@-3,~"alert")|
(~"Price Jumps ",@-5,"%")|~"Getting Ready To Rumble?"|~"solid, steady growth"|~"Don't miss
out "|~"Watch this one trade "|(~"Get in",@-3,(~"early"|~"now"))|~~"this one is going to
explode!"|~"ACT QUICK"|~"Watch this one go higher and higher"|~"Buy low, sell high!"|~"This
Company Is A Big Winner!"|~"Next Week Will Be Huge!"|(~"Get ",$CAPS[3-
6],~~"Immediately")|~"Make Some Fast Money"|~"Price Set To Jump"|~"on an upward trend")

(("S",~"h",{"0Oo"},~"rt Term")|("S",~"trong ","B",~"uy")|("I",~~"ndicat",{"Oo0"},~"r")|
("T",~"icker")|("S",~"ymb",{"Oo0"},~"l:")|("T",~"icker:"))

~"Poker Stocks"|$pennystock|(WP1,(~~"small cap stocks"|~~"microcap stock"|~~"small caps"|
~"microcaps"),WP1)

WP1,(~"Under the Radar"|~"Put it on your screen now"|~"Radar It Right Now!"|(~"ADD ",@-8,~"
TO YOUR RADAR",@-10,~"NOW")),WP1

VSTK Manual 5th Edition CyberSoft Operating Corporation

VSTK Manual 5th Edition 315 of 343

Name Definition
;; stocks

$define popwebs
;websites often used in spam/scam emails

$define popwebs2
;more websites often used in spam/scam emails

$define spoofees ($popwebs)|($popwebs2)
;sites spoofed in spam emails

$define scamees
;sites used as part of scam emails

$define scamsalut ("\nDear",@-20,(~"client"|~"user"|~"customer"|~"consumer"|~"member"),WP1)
;scam email salutations

$define scamtalk
;phrases used in scam emails

$define scamurl ~"<A ,@-30,~"href=",$website,@-75,~"target=_self>",$http,@-10,$scamees,$DOM3,@-50,"<"#
; websites used in scamemails

$define scamact
;attempts to obtain consumer info by scammers

$define scamact2 ((~"partner"|~"partnership")|("financial transaction")|(~"investments"))
;attempts to scam through investing

$define norisk
;risk-free language

$define secret (~"secrecy"|~"confidential"|~"secret"|~"personal"|~"security")
;scam language

$define verify
;attempts to obtain consumer info in scam emails

$define scamrep ~"as",@-6,(~~"next of kin" |~"beneficiary"|~"relative"|~"representative")
;scam email language for a representative

$define acct ~"abandoned sum"|~"dormant account"|~"ghost account"|~"unclaimed account"
;unclaimed monies language

$define deth (~"died"|~"killed"),@-50,(~"crash"|~"illness")
;death of relative scam language

$define bigbucks
;monies offered by scammer

$allrand[0-10],(~"walla"|~"yahoo"|~"msn"|~"monster"|~"sina"|~"fbi"|~"cia"|~"cyber"|~"aol"|
~"erols"|~"test"|~"att"|~"every1"|~"earthlink"|~"hinet"|~"lycos"|~"comcast"|~"excite"|~"go"|
~"virgilio"|~"gateway"|~"lottery"|~"specials"|~"Promotions"|~"bargain"|~"marketing"|~"rcn"|
~"knowledge"|~"adelphia"),$allrand[0-10],$DOM3

$allrand[0-10],(~"good"|~"zilla"|~"mail"|~"bell"|~"net"|~"web"|~"soft"|~"online"|~"west"|
~"click2"|~"gte"|~"han"|(~"empa",("l"|"ss"))|~"tom"|~"china"|~"buy"|~"bigfoot"|~"juno"|~"daum"|
~"mindspring"|~"prodigy"|~"usa"|~"wanadoo"|~"mac"|~" verizon"|~"phreaker"|~"reward"|~"dsl"|
~"virgin"|~"gmx"|~"global"|~"nate"|~"surr ealismo"|~"paran"|~"libero"|~"flash"|~"gawab"|
~"oicp"|~"alibaba"|~"site"|~"fire"|~"alltel"|~"google"|"free"|"people"),$allrand[0-10],$DOM3

(~"bankone"|~"southtrust"|~"compassweb"|~"Lasalle"|~"lasallebank"|~"regionsnet"|~"jpmorgan"|
~"Bow"|~"charterone"|~"wammu"|~"wamu"|~"wamucorp"|~"wamu4u"|~"paypal"|~"ebay"|
~"ANZ"|~"citizens"|~"citizensbanki ng"|~"citibank"|~"regionsbank"|~"regions"|
~"bankofthewest"|~"thebankofthewest"|~"mbna"|~"boq"|~"bank-of-queensland"|~"central-
bankonline"|~"keybank"|~"monster")"

(~"fraud ",(~"protection"|~"alert"))|~"anti-fraud team"|(~"account",@-5, (~"suspended"|
~"suspension"|~"fraudulent"))|~"sensitive information"

((~~"logon"|~~"login"|~"update"|~"confirm"|~"verify"|~"accept"|~~"re-enter"|~"review"),@-30,
(W1,(~"data"|~"Statement"|~"Agreement"|~"information"|~"account"),WP1))

(((~"cost"|~"obligation"|~"hitch"|~"hassle"|~"risk"),@-1,~"free") OR (WP1,~"no",@-2,(~"cost"|
~"obligation"|~"risk"|~"hitch"|~"hassle"),WP1) OR (WP1,~"no ",(~"personal"|~"financial"),~"
risk",WP1) OR (~"free from ",@-20,~"RISK") OR (~"100% secure"))

(((~"update"|~"verify"|~"secure"|~"confirm"),@-5,~"your",@-20,(~"authenticity"|~"account"|
~"information"|~"identity"|~"record")) OR (~"account"|~"access"),@-10,(~"frozen"|~"limited"|
~"restricted"|~"closure"|~"suspended")) OR (~"suspension",@-10,~"account"))

((("USD"|"M"|~"million"|~"thousand"|~"hundred"),@-30,$currency)|(WP1,(~"one"|~"two"|
~"three"|~"four"|~"five"|~"six"|~"seven"| ~"eight"|~"nine"),@-5,(~"MILLION"|~"thousand"|
~"hundred"),@-3,$currency,WP1))

VSTK Manual 5th Edition CyberSoft Operating Corporation

VSTK Manual 5th Edition 316 of 343

Name Definition
;; medical

$define weightloss
;weightloss medications

$define erection
;erection spelling

$define penis
;penis spelling

;; no MD
$define needed (~"needed" | ~"required" | ~"necessary")

;necessity variants

$define scriptsp
;(pre)script(ion) spelling

$define script ($scriptsp | (WP1,~"script",WP1) | (WP1,~"scrip",WP1) | ~~"doctor's order")
;script/MD order

$define noappt (~~"no doctor" | ~~"no appointment"),.*, $needed
;no appt/MD needed variants

$define noappt1 (WP1,~~"no doctor",@-5,($needed|(~"visit",{"s"}[0-1])|(~"appointment",{"s"}[0-1])),WP1)
;no MD needed/visit/appointment

$define noappt2 (WP1,~"no appointment",@-5,$needed,WP1)
;no appt needed

$define noscript (WP1,(~~"no prescriptions"|(~"no",@-5,$script,@-5,$needed) | (~"without a",.*$script)))
;script-free language

$define noMD ($noappt1|$noappt2|$noscript)
;no MD/appt/script language

;; drugs
$define ambien WP1,(~~"ambien"|~"ambein"),WP1

;Ambien variants
$define vioxx WP1,(~"\/I()}{}"|~~"vioxx"),WP1

;Vioxx variants

$define ritalin
; Ritalin spammer-spelling

$define viagrasp $letterV,@-3,$letterI,@-3,$letterA,@-3,$letterG,@-3,{"Rr"},@-3,$letterA
;Viagra spammer-spelling

$define viagra
;Viagra mispellings

$define cialissp $letterC,@-3,$letterI,@-3,$letterA,@-3,$letterI,@-3,$letterI,@-3,$letterS
;Cialis spammer-spelling

$define cialis ($cialissp | ~"cailis")
;Cialis mispelling

$define vicodin $letterV,@-3,$letterI,@-3,$letterC,@-3,$letterO,@-3,$letterD,@-3,$letterI,@-3,$letterN
;Vicodin spammer spelling

~"Hydroxycut" | ~"Metabolife" | ~"Xenedrine" | ~W"Thermo Phen Phen" |~"HGH " | ~W"Human
Growth Hormone"

~~"erection"|~"erektion"|~"erekshun"|(WP1,$letterE[1-3],WP0,$letterP[0-3],WP0,$letterR[1-
3],WP0,$letterR[0-3],WP0,$letterE[1-3],WP0,$letterE[0-3],WP0,$letterC[1-3],WP0,$letterC[0-
3],WP0,$letterT[1-3],WP0,$letterT[0-3],WP0,$letterI[1-3],WP0,$letterI[0-3],WP0,$letterO[1-
3],WP0,$letterO[0-3],WP0,$letterN[1-3],WP0,$letterN[0-3],WP0)

$letterP,$punct[0-10],$letterE[1-6],$punct[0-10],$letterN[1-6],$punct[0-10],$letterI[1-6],
$punct[0-10],$letterS[1-6],$punct[0-10]

$letterP,@-3,{"Rr"},@-3,$letterE,@-3,$letterS,@-3,$letterC,@-3,{"Rr"},@-3,$letterI,@-
3,$letterP,@-3,$letterT,@-3,$letterI,@-3,$letterO,@-3,$letterN

{"Rr"}[1-6],$punct[0-10],$letterI[1-6],$punct[0-10],$letterT[1-6],$punct[0-10],$letterA[1-6],
$punct[0-10],$letterI[1-6],$punct[0-10],$letterI[1-6],$punct[0-10],$letterN[1-6]

~~"viagra"|~"/iagr@"|~"Vagira"|~"Virgaa"|~"Viarga"|~"Vgiaga"|~"Vimaga"|~"iaq¬ßra"|
~"V1AGR0"

VSTK Manual 5th Edition CyberSoft Operating Corporation

VSTK Manual 5th Edition 317 of 343

Name Definition
;; drugs

$define phentermine
;Phentermine spammer-spelling

$define levitra ~"levitra"|~"levitraa"
;Levitra variants

$define xanax ~"xanax"|~"xanex"
;Xanax variants

$define valiumsp $letterV,@-3,$letterA,@-3,$letterL,@-3,$letterI,@-3,$letterU,@-3,$letterM
;Valium spammer-spelling

$define valium ~"Va|mum" | $valiumsp | $valium3
;Valium variants

$define propecia
;Propecia spammer-spelling

$define tblamb
;Ambien spelled out in table form

$define tblcial
;Cialisspelled out in table form

$define tblviag
;Viagra spelled out in table form

$define tblsoma (">",(("S" & ~"om")|("S" & ~"oma")|(~"So" & ~"ma")),"<")
;Soma spelled out in table form

$define tblval
;Valium spelled out in table form

$define tblxan (">",(("X" & ~"an")|("X",~"ana")|("X",~"anax")|(~"Xa",~"na")|(~"Xa",~"nax")|(~"Xan",~"ax")),"<")
;Xanax spelled out in table form

$define tblprop
;Propecia spelled out in table form

$define tbllev
;Levitra spelled out in table form

$define tblmer
;Meridia spelled out in table form

$define tblmedz $tblamb|$tblcial|$tblviag|$tblsoma|$tblval|$tblxan|$tblprop|$tbllev
;ambien/cialis/viagra/soma/valium/xanax/propocia/levitra in table form

$letterP,@-3,$letterH,@-3,$letterE,@-3,$letterN,@-3,$letterT,@-3,$letterE,@-3{"Rr"},@-
3,$letterM,@-3,$letterI,@-3,$letterN,@-3,$letterE

(WP1,$letterP[1-3],$punct[0-1],$letterP[0-3],$punct[0-1],$letterR[1-3],$punct[0-1],$letterR[0-3],
$punct[0-1],$letterO[1-3],$punct[0-1],$letterO[0-3],$punct[0-1],{"Pp"}[1-3],$punct[0-1],{"Pp"}
[0-3],$punct[0-1],$letterE[1-3],$punct[0-1],$letterE[0-3],$punct[0-1],$letterC[1-3],$punct[0-1],
$letterC[0-3],$punct[0-1],$letterI[1-3],$punct[0-1],$letterI[0-3],$punct[0-1],$letterA[0-3],
$punct[0-1],$letterA[0-3],WP1)

(">",(("A" & ~"mb")|("A" & ~"mbi")|("A" & ~"mbie")|("A" & ~"mbien")|(~"Am" & ~"bi")|(~"Am" &
~"bie")|(~"Am" & ~"bien")|(~"Amb" & ~"ie")|(~"Amb" & ~"ien")),"<")

(">",(("C" & ~"ia")|("C" & ~"ial")|("C" & ~"iali")|("C" & ~"ialis")|(~"Ci" & ~"al")|(~"Ci" & ~"ali")|
(~"Ci" & ~"alis")|(~"Cia" & ~"li")|(~"Cia" & ~"lis")),"<")

(">",(("V" & ~"ia"|("V" & ~"iag")|("V" & ~"iagr")|("V" & ~"iagra")|(~"Vi" & ~"ag")|(~"Vi" &
~"agr")|(~"Vi" & ~"agra")|(~"Via" & ~"gr")|(~"Via" & ~"gra")),"<")

(">",(("V" & ~"al")|("V" & ~"al")|("V" & ~"ali")|("V" & ~"aliu")|("V" & ~"alium")|(~"Va" & ~"li")|
(~"Va" & ~"liu")|(~"Va" & ~"lium")|(~"Val" & ~"iu")|(~"Val" & ~"ium")),"<")

(">",(("P",~"ro")|("P",~"rop")|("P",~"rope")|("P",~"ropec")|("P",~"ropeci")|("P",~"ropecia")|
(~"Pr",~"op")|(~"Pr",~"op")|(~"Pr",~"ope")|(~"Pr",~"opec")|(~"P r",~"opeci")|(~"Pr",~"opecia")|
(~"Pro",~"pe")|(~"Pro",~"pec")|(~"Pro",~"peci")|(~ "Pro",~"pecia")),"<")

(">",(("L" & ~"ev")|("L" & ~"evi")|("L" & ~"evit")|("L" & ~"evitr")|("L" & ~"evitra")|(~"Le" &
~"vi")|(~"Le" & ~"vit")|(~"Le" & ~"vitr")|(~"Le" & ~"vitra")|(~"Lev" & ~"it")|(~"Lev" & ~"itr")|
(~"Lev" & ~"itra")),"<")

(">",(("M" & ~"er")|("M" & ~"eri")|("M" & ~"erid")|("M" & ~"eridi")|("M" & ~"eridia")|(~"Me" &
~"ri")|(~"Me" & ~"rid")|(~"Me" & ~"ridi")|(~"Me" & ~"ridia")|(~"Mer" & ~"id")|(~"Mer" & ~"idi")|
(~"Mer" & ~"idia")),"<")

VSTK Manual 5th Edition CyberSoft Operating Corporation

VSTK Manual 5th Edition 318 of 343

Name Definition
;; meds

$define sexmed
;refers to sex-related medications

$define medicine ($sexmed)|($weightloss)|~"v.aIium"|~"valium"|~"xanax"|~"xana|x"
;other meds

$define medsp
;medication spammer-spelling

$define medz $letterM,@-3,$letterE,@-3,$letterD,@-3,$letterS
;medsspammer-spelling

$define meds
;spam medication references

$define pillz
;pillsspammer-spelling

$define drugz $letterD,@-3,{"Rr"},@-3,$letterU,@-3,$letterG,@-3,$letterS
;drugs spammer- spelling

$define steroids
;steroids spammer-spelling

$define spammeds
;meds used in spam emails

$define edmed ($cialis|$viagra|$levitra|$propecia|(WP1,(~"love"|~"sex"),@-3,$pillz))
;sex- related pill references

$define edmeds
;reference to multiple sex meds in spam email

$viagra | ~~"HGH " | ~W"Human Growth Hormone" | ~"Blue pill" | ~"Xenical" | $phentermine |
~"Somatotropin" | ~"vprx"

$letterM,@-3,$letterE,@-3,$letterD,@-3,$letterI,@-3,$letterC,@-3,$letterA,@-3,$letterT,@-
3,$letterI,@-3,$letterO,@-3,$letterN

(($medsp) | ($medz| $pillz| $drugz| $steroids | ~"tablets") | (~"remedies" | ~"medicine" |
~~"alleviating item"))

(WP1,$letterP[1-3],WP0,$letterI[1-3],WP0,$letterL[1-3],WP0,$letterL[1-3], WP0,($letterS|
$letterZ),WP1)

$letterS,@-3,$letterT,@-3,$letterE,@-3,{"Rr"},@-3,$letterO,@-3,$letterI,@-3,$letterD,@-
3,$letterS

WP1,(~"Phentermine" | ~"Celebrex" | ~"vicodin" | ~"cialis" | ~"ambien" | ~"levitra" | ~"xanax" |
~"ultram" | ~"viagra" | ~"valium" | ~"soma" | ~"propecia" | ~"meridia" | ~"zyban" | ~"Diazepam" |
~"Xenical" | " HGH " | ~"Paracodin" | ~"Phentermine" | ~"Human Growth Hormone")

($edmed,@-500,$edmed,@-500,$edmed)|($edmed,@-500,$edmed,@-500,$edmed,@-
500,$edmed)|($edmed,@-500,$edmed,@-500,$edmed,@-500,$edmed,@-500,$edmed)

VSTK Manual 5th Edition CyberSoft Operating Corporation

VSTK Manual 5th Edition 319 of 343

Name Definition
;; offers
$define satis (~"100% Customer Satisfaction"|~"satisfaction guaranteed"|~"you will be satisfied")

;satisfaction language

$define BBB
;Better Business Bureau references

$define salztalk
;sales language

$define sales
;sales language

$define onsale
;more sales language

$define foru ("4" |~"for"),WP0,($letterU | ~"you")
;4/for you

$define free
;freespammer-spelling

$define watches (~"wristwatch" | ~~"watch wear" | ~"wrist" | ~"watches" | ~"timepiece" |~"timekeeper")
;watches variants

;; diploma
$define university ~"universi-y"|~"university"|~~"college"

;university/college
$define degree ~"d-gree"|~"degree"|(~"d",{"Ee3"},"gr",{"Ee3"}[2-3])

;degreespammer-spelling
$define diploma ~~"diploma"|~"dlpL()ma"|(~"d",$letterI,~"p",$letterL,$O,~"m",$letterA)

;diploma variants
$define sheepskin ("B.S.",@-10,"M.S.",@-10,"Ph.D.") OR (~"Bachelor",@-10,~"Master",@-10,~"Doctorate")

;B.S./M.S./PhD variants

;; purchase

$define shipment
;shipment spammer-spelling

$define shipping
;shipping language

$define order ~"order | ~"purchase" | ~"buy" |~"obtain" |~"get"
;order variants

$define online
;online variants

$define tracking ~~"online tracking"|(~"track",@1-25,~"online")|~~"cyber tracking"|~~"real-time tracking"
;tracking variants

(~"VERIFIED BY ","BBB",@-25,~"APPROVED BY ","VISA")|(~"official",@-3,"BBB",@-
3,~"verification",@-25,"VISA",@-3,~"approval")

(WP1,(~"NO PURCHASE NECESSARY"|((~"today"|~"this week"),W1,~"only")|~"Get In Early"|
("F",~"ree ",@-3,"G",~"ift!")|(~"Try it ","FREE")|(~~"If you don't ",@-15,~~"love it, send it back")|
(~"Save up to",@-3,$d[1-4],@-3,"%")|(~"limited ",(~"quantities available"|~"time offer"))|
((~"act"|~"save"|~"order"|~"buy"),@-3,(~"now"|~"here"))|((~"this sale"|~"these prices"),~" won't
last")|~"Restrictions may apply"|~"Offer cannot be combined with other "|((~"This week"|
~"today"),~" only")| ~~"valuable coupons"|((~"incredible"|~"great"|~"special"|~"spectacular"),@-
3, (~"discounts"|~"prices"|~"deals"|~"offers"|~"purchases"|~"savings"|~"buys"))| $validsale|
~"when these deals are gone, they are gone!"),WP1)

(~"Save up to ",$d[1-4],"%")|~"Buy now"|~"limited time offer"|~"limited quantities available"|
~"act now"|~"this sale won't last"|~"special price"

(~~"This week only" | ~~"View Online Store" |~~"CLlCK HERE to view brochure"|~~"M0RE
DETA1LS HERE" | ~~"Save Now"|~~"spectacular savings"|~~"special offers"|~~"valuable
coupons"|~"great deals"|(~~"Offer valid from",@-15,~"to",@-15,WP1)|(~~"Click Here For
Details"))

{"Ff"}[1-6],$punct[0-10],{"Rr"}[1-6],$punct[0-10],$letterE[1-6],$punct[0-10], ($letterE[0-1] |
$letterE[1-6]),$punct

$letterS,@-3,$letterH,@-3,$letterI,@-3,$letterP,@-3,$letterM,@-3,$letterE,@-3,$letterN,@-
3,$letterT

($shipment|((~~"first-class"|~"Priority"|~"rush"|~"free"|~"overnight"|~"express"|~"international"|
~"overseas"|~"worldwide"),WP1,(~"courier"|~"delivery"|~"shipp ing"|~"Mail"))|((~"ship"|
~"deliver"),@-4,(~"overseas"|~"internationally"|~"overnight"|~"express"|~"worldwide"))|~"trans
port service")\

(WP1,(~~"on the net"|~~"on the web"|~"internet"|~"worldweb"|~"web"|~"net"),(WP1|(~"s"|
~"s"),WP1))

VSTK Manual 5th Edition CyberSoft Operating Corporation

VSTK Manual 5th Edition 320 of 343

Name Definition
;; pornogr
$define adultsp $letterA,@-3,$letterD,@-3,$letterU,@-3,$letterL,@-3,$letterT

;adult spammer-spelling
$define adult $adultsp |~"Adiolt"

;adult variants
$define fbomb (({"Ff"}, {"WwUu*-_"}, {"Cc*-"}, {"Kk"}) | (WP1, ~~"fuk "))

;f-word variants
$define cbomb ~"c*ck" | ~"c-ck" | ~"cock" | ~"c_ck" | ~"c0ck" | ~"kunt"

;c-word variants

$define pornline
;porn-related words and spammer-spelling

$define pornline2 ~"amateur" | ~"lesbian" | ~"hardcore" | ~"anal " | ~"mature" | ~"interracial" |"seex"
;porn-related words

$define eighteen (~"eighteen" | ~"eightteen" | "18")
;18 variants

$define eighteenold
;18 years old variants

$define adultwarning $eighteen OR $eighteenold
;all 18 years old variants

$define cheatwife1 (~"wife" OR ~"wives" OR ~"women" OR ~"woman"),.*,(~"cheat")
;cheat lang.

$define cheatwife2 (~"cheat"),.*,(~"wife" OR ~"wives" OR ~"women" OR ~"woman")
;cheating wife language

$define cheatwife $cheatwife1 OR $cheatwife2
;all cheating wife language

$define pornadj
;common porn adjectives

;; legal

$define legal1 (~"bill", @-30, ~"section 301") OR (~~"Bill s.1618 Title III passed by the 105th U.S.Congress")
;legal language about spam

$define legal2
;legal language about spam

~"teens" | ~"girls" | ~"adults" | ~"adu1ts" | (WP1,~"xxx",WP1) | ~"celebrities" |~"sex " | ~"porn" |
~"p0rn" | ~"p@rn" | ~"t√®√®n" | ~"f√∫ck" | ~"p√Æcs" | ~"GlRLs" | ~"chicks" | ~"Virg1n" |
~"vag1nas" | ~"peek1ng" | ~"Hardc0re" | ~"bl0nde" | ~"ppoorrnn" | ~"lesbo" | ~"lesb0"

(~~"MUST BE ATLEAST 18 YEARS OLD") | (~W"Adults Only", WP1, $eighteen, WP1, ~W"or
older") | (~W"at least", WP1, $eighteen, WP1, ~W"years of age") | ((~w"at least" | ~W"must be"),
WP1, $eighteen, WP1, (~W"years of age" | ~W"years old" | ~W"or older")) | (~W"You must be
over", WP1, $eighteen) | (~W"18 years or older") | (~W"YOU MUST BE AT LEAST", WP1,
$eighteen, WP1, ~W"TO ENTER") | ("18+")

~"horny"|(~"teen",$nspo[0-1],~"age")|~"teen"|~"underage"|~"barely legal"|~"virgin"|~"hot"|
~"wet"|~"dripping"|~"willing"

(~"offer",.*,~"void",.*,~"prohibited",.*,~"law") OR (~W"email complies with all regulations and
is not spam")

VSTK Manual 5th Edition CyberSoft Operating Corporation

VSTK Manual 5th Edition 321 of 343

Name Definition
;; click/link

$define clickwords
;phrases for click here

$define click
;phrases for click here or opt out

$define contact
;phrases for click here or opt out or request info

$define optin
;opt out or opt in language

$define optin2 (~W"To remove yourself from this opt-in mailing") OR (~~"su.bs.cript.ionop.tio.ns")
;subscription options

$define link ~"click ",(~"the link"|~"here"|~"below"|~"on this link"|~""|~""|~""|~""|~""|~""|~"") AND $website;
linkage language

$define visit ~"visit ",(~"this link"|~"here"|~"us"|(~"our ",@-5,~"site")) AND $website
;visit website language

$define vslink
;visit link language

$define clklink ((~"click ",(~"the link"|~"here"|~"below"|~"on this link"))|~"Follow this link")
;click link language

$define clkhere
;click here spammer-spelling

$define clklink2 ((~"follow"|~"click"|~"visit"),@-5,~"the link below")
;visit link language

$define clk
;click /visit link language

$define log (~"login"|~"logon")
;logon language

$define scamlink (W1,(~"click"|~"activate"|~"follow"|~"visit"),@-20,(~"link"|~"here"),WP1)
;follow link language

(~"Click" OR ~"CLIKK" OR ~"CLCIK" OR ~"C1ick" OR ~"cli~ick" OR ~"ciilck" OR "Clicking
Here")

($clickwords OR ~~"Unsubscribe" OR ~~"Optin" OR ~~"Optout" OR ~~"0ptout" OR ~~"opt0ut"
OR ~~"0pt0ut" OR ~"0pt" OR ~~"press")

($clickwords OR ~W"more info" OR (~"here", WP0, (~"A>" | ~W"A HREF" | ~"http://")) OR
~W"fill out" OR ~W"please send")

(~"click",@-30,~~"opt-out") OR (~~"Opt-out instructions") OR (~W"Member of the opt-in
America List") OR (~W"to opt out", @-100, ~W"click here") OR (~W"remove yourself from our
opt in list") OR (~~"removehtml") OR ($website,.*,"/optout.php",WP1) OR
($website,.*,"/accept",WP1) OR ($website,.*,"/confirm",WP1)

((~"visit ",(~"this ",(~"link"|~~"website"))|~"here"|~"us"|(~"our ",@-5,~"site")) |~"use the link
below")

(($letterC[1-2],$punct,{$letterL,$letterI}[1-2],$punct[0-2],{$letterL,$letterI}[1-2],$punct[0-2],
$letterC[1-2],$punct[0-2],$letterK[1-2],WP1,$letterH[1-2],$punct[0-2],$letterE[1-2],@-
3,$letterR[1-2],$punct[0-2],$letterE[1-2])|~"Cilck Here")

(~"GO HERE:"|$clklink2|$clklink|$vslink|~"check this out"|~"one click away"| ((~"see"|~"use"|
~"click on"),~" the link below")|$clkhere|~"View Online Store" |~~"M0RE DETA1LS HERE"|
(~"Click Here ",(~"For Details"|~"to view"))|~"a few simple clicks away")

VSTK Manual 5th Edition CyberSoft Operating Corporation

VSTK Manual 5th Edition 322 of 343

Name Definition
;; techno

$define microsoft
;microsoftspammer-spelling

$define software
;software for sale by spam

$define software2
;software for sale by spam

$define softwares
;multiple software products for sale by spam

$define softmakers
;softwaremakers

$define softmakers2
;softwaremakers

$define dvds $letterD,@-3,$letterV,@-3,$letterD,@-3,$letterS
;DVD spammer-spelling

;; tables
$define etbl ("\x3c\x2f",~"td","\x3e"),@-25,("\x3c\x2f",~"tr","\x3e"),@-25,("\x3c\x2f",~"table","\x3e")

;spam table formatting

$define tblstf
;table formatting with bold/strong

$define tbldiv ("\x3c",~"div",\x3e") AND ("\x3c\x2f",~"div",\x3e")
;spam table with div

$define tbl ("\x3c",~"table" & "\x3e") AND ("\x3c\x2f",~"table" & "\x3e")
;spam table formatting

$define tblbrk (W0,("</DIV> <DIV>"|"</DIV> </TD>"|"<TD> <DIV>"),W0)
;spam table formatting with breaks

$letterM,@-3,$letterI,@-3,$letterC,@-3,{"Rr"},@-3,$letterO,@-3,$letterS,@-3,$letterO,@-3,
{"Ff"},@-3,$letterT

WP1,(("E",~"nterprise")|(~"S",~"tudio")|("F",~"irewall")|("A",~"crobat")|("A",~"dobe")|
($microsoft)|("O",~~"ffice XP")|("M",~"acromedia")|("C",~"orel")| ("W",~~"indows XP")|
("D",~"reamweaver")|("P",~~"icture It")|("P",~"hoto",@-1,"P",~"ainter")|"Excel"|("P",~"hotoshop")|
("I",~"nDesign")|("P",~"remier")|("I",~ "llustrator")|("W",~"indows")|("M",~"icrosoft",@-
1,"Office")|("Office",@-10, "P",~"rofessional")),WP1)

((~"Dreamweaver"|~"Picture It"|~"PhotoPainter"|~"Excel"|~"Photoshop"|~~"InDesign"|
~~"Premier"|~"Illustrator"|~"Windows"|~"Office"),@-50,(~"Dreamweaver"|~"Picture It"|
~"PhotoPainter"|~"Excel"|~"Photoshop"|~~"InDesign"|~~"Premier"|~"Illustrator"|~"Windows"|
~"Office"))

($software,@-500,$software,@-500,$software,@-500,$software,@-500,$software,@-
500,$software,@-500,$software,@-500,$software)|($software,@-500,$software,@-
500,$software,@-500,$software,@-500,$software@-500,$software,@-500,$software,@-
500,$software,@-500,$software,@-500,$software)|($software,@-500,$software,@-
500,$software,@-500,$software,@-500,$software,@-500,$software,@-500,$software,@-
500,$software,@-500,$software,@-500,$software,@-500,$software,@-500,$software)

(~"Macromedia"|~"Corel"|~"Linux"|"Adobe"|~"Microsoft"|~"Macintosh"|(~"Mac",@-6,~"PC")|
(~"PC",@-6,~"Mac"))

(~"Macromedia"|~"Corel"|~"Linux"|"Adobe"|~"Microsoft"|~"Macintosh"|(~"Mac",@-6,~"PC")|
(~"PC",@-6,~"Mac")),@-50,(~"Macromedia"|~"Corel"|~"Linux"|"Adobe"|~"Microsoft"|
~"Macintosh"|(~"Mac",@-6,~"PC")|(~"PC",@-6,~"Mac"))

("\x3c",~"strong",\x3e")|("\x3c",~"bold",\x3e")|("\x3c\x2f",~"strong",\x3e")|
("\x3c\x2f",~"bold",\x3e")

VSTK Manual 5th Edition CyberSoft Operating Corporation

VSTK Manual 5th Edition 323 of 343

Name Definition
;; unsubscr—unsubscribe language

$define unsub
;unsub

$define unsubscribe
;unsubscribe

$define remove1
;remove 1

$define remove2
;remove 2

$define remove3

(NOT ~"unsubscribe") AND ($upunc | $letterU[1-6]),$punct[0-10],$letterN[1-6],$punct[0-10],
$letterS[1-6],$punct[0-10],$letterU,$punct[0-10],$letterB[1-6],$punct[0-10],$letterS[1-6],
$punct[0-10],$letterC[1-6],$punct[0-10],$letterR[1-6],$punct[0-10],$letterI[1-6],$punct[0-10],
$letterB,$punct[0-10],$letterE

(~~"Unsubscribe",@-100,~~"Click") OR (~~"Recurring",@-15,~"mail") OR
(~"Unsolicited",W1,~~"email") OR (~W"to be taken 0ff our list") OR (~W"no longer wish to
receive our offers please Click Here For Deletion") OR (~W"Stop Sending me this click here") OR
(~~"OPT-OUT from this mailing") OR (~W"prefer to not receive future email messages") OR
(~W"avoid receiving additional advertisements from us") OR (~W"If you received this letter by
mistake, please click here") OR (~W"Reply with off and I won't write you again") OR (~W"To be
removed send your remove request to") OR (~W"If you dont wish to recieve
any",WP0,~~"email") OR (~W"avoid receiving this again, e- mail",.*,~"takemeoffthislist.com")
OR (~W"If you would not like to receive future offers") OR (~W"If you prefer not to receive
future mailings")

(~W"removed from receiving future") OR (~W"Remove Yourself Permanently") OR
(~W"Removed from this list") OR (~W"to stop all future offers") OR (~W"If you would like to be
removed from mailings concerning weight loss") OR (~W"to be removed from future mailings")
OR (~W"Replying to this message will not unsubscribe you") OR (~W"Would you like to never
hear from us again? Go here") OR (~W"If you no longer wish to receive quality offers like this
from us") OR (~~"To unsubscribe, go to") OR (~W"To unsubscribe from receiving further email")
OR (~W"use this link if you would like to be taken off this list") OR (~W"To be removed from
our list, please send an email to") OR (~W"If you wish to receive no further such advertisements,
please go here") OR (~W"Sorry if this email caused you inconvenience",@-30,~W"to stop me
sending you more please go here") OR (~W"To be removed from all our future corporate mailings
please click below") OR (~~"takemeoffplease",W0,"")

(~~"email",@-40,~~"remove",@-40,~~"subject line") OR (~"terminate",@-7,~W"future offers")
OR (~W"To terminate future offers, please visit") OR (~W"Use this link to be removed from this
list") OR (~~"FOR Removal mail to") OR (~W"To unsubscribe send a blank email") OR
(~W"Please use this link to be taken off our list") OR (~W"not responsible fOR any unwanted
email sent to you using this software") OR (~W"To unsubscribe from our list") OR
(~W"unsubscribe now by going to") OR (~W"prefer not to receive these messages inthe future")
OR (~W"no longer like to receive special promotions") OR (~W"use this link to be taken off this
list") OR (~W"To be removed, please reply back with REMOVE") OR (~"Not4me") OR (~W"If
you would rather not receive",@-30,~W"messages such as this one") OR (~W"CLICK HERE For
Instant Removal") OR (~W"unsubscribe yourself off this list here") OR (~W"send a removal
request by clicking below") OR (~W"to be removed:", WP0, (~W"<A HREF>" | ~"WWW." |
~"HTTP"))

(~W"removed from this mailing list") OR (~W"removed from further mailing") OR
(~~"remove",@-30,~~"opt out") OR (~W"hope you enjoyed receiving this message, but if you no
longer wish to receive them, use this") OR (~W"Want to be removed from our email list") OR
(~W"to be taken off go here") OR (~~"OPT-OUT from this mailing") OR (~W"Click Here if you
no longer wish to receive email") OR (~W"Follow this link to unsubscribe") OR (~W"If you wish
not to receive any email from us") OR (~W"Click here to be removed") OR (~W"If you do not
wish to receive any further messages") OR (~W"If you do not want to receive special offers in the
future") OR (~"takeMeoff") OR (~"To say goodbye, please click here") OR (~W"If you would no
longer like us to contact") OR (~W"Click Below to be removed fom our mailing systems") OR
(~"Click Below to be removed from our exclusive mailing opt-in systems") OR
(~W"RemovalLink") OR ((~W"to change your email status" | ~W"to change your e-mail status"),
W0, ~W"<A HREF")

VSTK Manual 5th Edition CyberSoft Operating Corporation

VSTK Manual 5th Edition 324 of 343

Name Definition
;; unsubscr—unsubscribe language

;remove 3

$define remove4
;remove 4

$define remove5
;remove 5

$define remove6
;remove 6

$define remove7
;remove 7

(~W"remove in the subject and you will be removed off our list") OR (~~"Don't want to receive
this email anymORe",@-30,~~"click") OR (~W"to be removed from future mailings please
reply",@-100, ~W"with remove in the subject") OR (~~"click",@-30,(~~"unsubscribe" |
~W"unsubscribe")) OR (~~"To be taken off our database. Please click below") OR (~W"Take Me
OFF Your List Please allow 48 hours fOR processing") OR (~W"you would like to remove
yourself from future mailings") OR (~W"If you no longer wish to receive our offers and updates")
OR (~W"to be removed", @-200, ~W"click here") OR (~W"no longer wish to receive such
messages") OR (~W"To unsubscribe from our mailing list") OR (~W"withdraw from future offers
by following the unsubscribe link") OR (~W"You may withdraw from future offers by following
the unsubscribe link") OR (~W"if you would not like to receive future mailings") OR (~W"if you
wish to unsubscribe") OR (~W"If you'd rather not hear from us") OR (~W"I will take you off the
list")

(~~"unsubscribe",@-30,~~"send an email to") OR (~W"To get out from future notifications, send
any email here") OR (~W"prefer not to receive future marketing messages from us, Click here")
OR (~W"To discontinue the receipt of emails, visit the following link") OR (~W"Remove From
List click here") OR (~W"To Unsubcribe from our mailing list") OR (~W"reply to this email and
you will be removed from our data base") OR (~W"take yourself out of the database permanently
by choosing this link") OR (~W"to unsubscribe reply to this email with unsubscribe in the
subject line") OR (~W"This is a one time mailing, you will not recieve mORe email from us") OR
(~W"To be off from future offers") OR (~W"Delist Me Now") OR (~W"click To Get off the mail
list") OR (~W"to stop receiving", @-25, (~W"offers" | ~W"mailings")) OR (~W"To UnSubscribe
yourself from this mailing list") OR (~W"be removed from future email announcements")

(~W"To change your subscription details OR stop receiving email") OR (~W"FOR Removal mail
to") OR (~~"To be rem0ved, click here") OR (~~"To be removed, click here") OR (~W"Remove
yourself from this recurring list") OR (~W"if you prefer to be deleted from our database") OR
(~~"stop receiving emails, click here") OR (~W"Click here to be removed from mailing list") OR
(~~"promotion",@-100,~W"please click here to be removed") OR (~W"Remove me from
receiving future email") OR (~W"remove yourself from this and related email lists") OR (~W"If
you would prefer not to receive future marketing messages, click here") OR (~W"Push Now If you
aren't interested in this simply respond to my email") OR (~W"dont want me to email you any
mORe? go here") OR (~W"To avoid receiving this again") OR (~W"If you no longer wish to be
notified") OR (~W"If you do not wish to receive future") OR (~W"Feel free to", @-30,
~W"discontinue", @-30,~W"this service") OR (~W"To be deleted from our member database")

(~W"click here if not interested") OR (~W"To Remove from our mailing") OR (~W"immediately
withdrawn from all future mailings") OR (~~"SORry",@-20,~~"Send",@-30,~~"mail",@-
30,~~"click",@-30,~~"reject" | @-30,~~"remove" | @-30,~~"unsubscribe" | @-30,~~"opt") OR
(~W"Please use this link if you would like to be taken off of future mailings") OR (~W"come here
to be taken off") OR (~W"visit here to unsubscribe") OR (~W"To be removed from our lists,
click") OR (~W"our apologies if you have been sent this email in errOR") OR (~W"If you do not
wish to receive offers") OR (~W"Don't want any mORe adverts? Simply click here") OR (~W"T0
BE REM0VED FR0M") OR (~W"To never receive an ad like this, visit this link") OR (~"TAKE
ME 0FF") OR (~W"If you no longer wish to be member and receive our emails") OR (~W"If you
do not wish to receive any further communications") OR (~W"To get off of this campaign") OR
(~W"Click to be removed") OR (~W"FOR unsubscribe reply this email with subject")

VSTK Manual 5th Edition CyberSoft Operating Corporation

VSTK Manual 5th Edition 325 of 343

Name Definition
;; unsubscr—unsubscribe language

$define remove8
;remove 8

$define remove9
;remove 9

$define remove10
;remove 10

$define remove11
;remove 11

(~W"to unsubsrcibe") OR (~W"unsubscribe from mailing list") OR (~W"Connect here if you wish
to unsubscribe") OR (~W"follow the unsubscribe instructions below") OR (~W"you can
unsubscribe by sending a blank email") OR (~W"If you no longer wish to receive our offers and
specials click here") OR (~W"To stop receiving targeted mailings") OR (~~"This is Unsolicited
E-mail") OR (~W"To no longer receive click this") OR (~W"To avoid receiving similar offers in
the future") OR (~W"you can unsubscribe by going here") OR (~W"one time mailing so no need
to unsubscribe") OR (~W"please see below fOR unsubscribe infORmation") OR (~W"If you do
not wish to receive future mailings from us, please go to the link below") OR (~W"To opt out of
our contact database click here") OR (~W"If you don't want any mORe emails from us") OR
(~W"would like to be removed from any further mailings") OR (~W"to stop receiving these
offers") OR (~W"To discontinue these offers", @-100, ~"here");unsubscribe language

(~W"If you don't want this type infORmation OR e-mail") OR (~W"if you no longer wish to hear
about future offers from us") OR (~W"Want to stop future messages from us") OR (~W"To be
taken off our list within the next 48 hours please click below") OR (~W"To be removed write
back with remove in subject line") OR (~~"To Be Removed Click Below") OR (~W"To purge
your email address from our database") OR (~W"To never get this mail again, take preventive
action") OR (~W"If you would rather not receive these messages") OR (~W"To prevent further
contact please use the following link") OR (~W"If you do not wish to receive these mailings
anymORe") OR (~W"If you would like to be unsubcribed from this newsletter") OR (~W"Please
click below to remove yourself from the list.") OR (~W"If you would prefer not to receive further
emails") OR (~W"If you would rather not receive emails") OR (~W"To remove your email from
our service") OR (~W"If you wish to be unsubscribed from future mailings")

(~W"If you do not wish to receive special offers") OR (~W"If you no longer wish to receive
infORmation from me") OR (~W"To be exluded from future mailings") OR (~W"if you", WP1,
(~"wish" | ~W"would like"), WP1, ~W"to remove yourself") OR (~W"to unsubscribe", @-30,
~W"point your browser") OR (~W"To be REM0VED", @-100, ~W"CLlCK HERE") OR (~W"If
you don't want to receive this mail any mORe") OR (~W"N0 mail ple@se") OR (~W"Please see
our website FOR removal Instructions") OR (~~"No Thanks I am not interested", @-30, ~W"<A
HREF") OR (~W"To stop n otifications click here") OR (~~"unsuscribe",@-30,~"click") OR
(~W"click here to stop receiving these messages") OR (~W"Use the link below to be permanently
withdrawn from all future mailings") OR (~W"If you do not with to receive",@-
30,~~"unsubscribe") OR (~W"to discontinue receiving messages from us") OR (~W"To receive
no mORe mail") OR (~W"If you would no longer like to receive special") OR (~"<A HREF=", @-
75, ~W"no mORe of this")

(~W"Rem0ve bel0w:") OR (~W"N0t interested:") OR (~W"feel free to cancel your subscription")
OR (~W"Click here to unjoin from this list") OR (~W"Click here to stop these notifications") OR
(~W"I D0N'T W@NT T0 RECIEVE THIS @NYMORE:") OR (~W"unsubscribe here", @-3,
~"") OR (~W"care to discontinue further sending of all our emails") OR (~W"TO GET NO
FURTHER OFFERS CLICK HERE") OR (~W"remove me", @-10, ~"") OR (~W"REMOVE
FROM MAILLIST", @-10, ~"") OR (~W"To be taken off please go to") OR (~W"If you do
not wish to receive any future email") OR (~W"Don't want to receive this email anymORe") OR
(~W"No mORe mail to your email") OR (~W"If you do not wish to receive any further") OR
(~W"If you do not want to receive these") OR (~~"HERE TO STOP RECEIVN") OR (~W"To opt
out of future e-mailings") OR (~W"To stop recieving") OR (~W"To be rern0ved") OR (~W"To be
removed from this mailing") OR (~"GoHereToBeDiscarded") OR (~"Turn notifications off")

VSTK Manual 5th Edition CyberSoft Operating Corporation

VSTK Manual 5th Edition 326 of 343

Name Definition
;; unsubscr—unsubscribe language

$define remove12
;remove 12

$define remove13
;remove 13

$define remove14
;remove 14

$define remove15
;remove 15

$define exclusion
;exclusion

$define wish
;wish

$define mac
;mac

$define mac2
;mac2

(~W"to stop emails", @-15, ~~"goto link") OR (~W"To stop receiving these emails click here")
OR (~W"fOR r-moval instructions") OR (~W"This is a one time mailing only") OR (~W"To
Remove from future offers") OR (~W"To be taken-off from all further mailings") OR (~W"No
Thanks, take me off your list") OR (~W"If you would no longer like to receive these offers") OR
(~"Here", @-25, ~W"to remove yourself from future") OR (~W"To never recieve another email")
OR (~W"Stop recieving these") OR (~W"reM0VE LNK") OR (~W"If you would like to be
removed from future offers just reply") OR (~W"If you wish to stop sending of all our mails") OR
(~W"choose to stop further sending of mail") OR (~W"FOR no further ads, click here") OR
(~W"Remove requests honORed 100%") OR (~W"You will not get anymORe of our emails if you
go here") OR (~W"to stop email",@-30,~W"clk link") OR (~W"click here to discontinue these
messages") OR (~W"De1ete your e-mai1") OR (~W"to cease future mailings click on this") OR
(~~"Opt-Out here")

(~W"wish to discontinue sending of emails") OR (~W"Add me to the",@-10,~~"No send list") OR
(~W"be permanently remove from this distribution system") OR (~W"If you want to discontinue
sending ofall our emails") OR (~W"Add my address to the",@-20,~~"optoutlist") OR (~W"To Be
Removed From This Update List") OR (~W"Stop receive from me") OR (~W"nothing elese fOR
me") OR (~W"to ensure that the unsubscribe process has been completed successfully") OR
(~W"To remove yourself from this list, please click here") OR (~W"To unsubscribe, visit here")
OR (~W"T@ke me 0ff") OR (~W"you can be deleted from our 0pt", @-3, ~"list") OR (~W"cli ck
here to be removed") OR (~"w@nt",.*,~~"to be R E M 0 V E D") OR (~W"Please stop future
announcements") OR (~w"Visit us anytime") OR (~W"Wish not to recieve") OR (~W"TAKE ME
OFF HERE") OR (~W"op-t out") OR (~W"If you have recieved this in error please use") OR
(~"PleaseRemoveMeFromMailingList") OR (~W"reply to this message with REMOVE in the
subject line")

(~w"to obstain from", @-15, ~W"mailing", WP0, ~W"click here") OR (~W"To change your e-mail
address or subscriber preferences") OR (~W"For future listing options:") OR (~W"to stop future
contact", @-35, ~W"<A HREF") OR (~W"No More Offers", W0, ~"") OR (~W">no more", W0,
~"") OR (~W"to unsubscribe", @-35, ~W"<A HREF") OR (~W"To modify future contact
options") OR (~W"To be expunged from our list please proceed") OR (~W"unsubscribe by
sending any email to") OR ($website,.*,~~"/nothanks.php")

(~~"Change your email preferences") OR (~"REMOVE",@-25,~~"FROM FUTURE E-MAILS")
OR (~W"To stop future advertisement") OR (~"git ",@-10,~"off ") OR (~~"To opt out",.*,~"http")
OR (~W"2 Get Taken Off") OR (~W"Stop promos") OR (~"http",.*,~"remove") OR (~"Click",@-
20,~"href",.*,~"here") OR (~W"To remove yourself from", @-75, ~"http://") OR (~W "remove
your address from further mailings") OR (~W"do not want to receive anymore promotions from
us") OR (~W"removed from",@-10,~W"future promotion") OR (~~"Press here") OR
(~"Press",.*,~W"remove from this list") OR (~~"This email advertisement") OR
(~"GetOffTheList") OR (~~"stop receiving e- mails from us") OR (~~"UsnuubcribeHeree") OR
(~~"press to stop receiving") OR (~~"onsubscr") OR (~W"No more",@-3,~"mail") OR (~W"This is
an advertisement") OR (~~"optout from future messages") OR (~W"be omited") OR (~~"r m x on
the bottom") OR (~~"This email is not S P A M") OR (~~"This is NOT unsolicited email") OR
($website,.*,~"/unsub",WP1) OR ($unsub)

(~W"excluded from our databases of addresses") OR (~W"excluded from", WP1, (~"future" |
~"further"), @-25, (~"offers" | ~"mailings"))

(~W"not wish to receive further messages") OR (~W"not wish to receive future messages") OR
(~W"not wish to receive further email") OR (~W"not wish to receive future email") OR (~~"no
longer wish",@-30, ~~"receive our email") OR (~W"If you wish to be removed") OR (~W"If you
no longer wish to be a member and receive our emails") OR (~W"wish to remove your name and
e-mail address from our database") OR (~W"if you no longer wish to be infORmed", @-150,
~W"unsubscribe") OR (~W"wish to no longer be on this", @-25, ~"list2

($unsubscribe) OR ($remove1) OR ($remove2) OR ($optin) OR ($exclusion) OR ($legal1) OR
($legal2) OR ($wish)

($mac) OR ($remove3) OR ($remove4) OR ($remove5) OR ($remove6) OR ($remove7) OR
($optin2) OR ($remove8) OR ($remove9) OR ($remove10) OR ($remove11) OR ($remove12) OR
($remove13) OR ($remove14) OR ($remove15) OR ($randcharend)

VSTK Manual 5th Edition CyberSoft Operating Corporation

TABLE 2 PORN-HARASS.VDL

;; beginning of file harass.vdl`~Must be used in text format ONLY!!!

VSTK Manual 5th Edition 327 of 343

Name Definition
;; macros pronoun action endings
$define pronoun (~"my" |~"his" |~"her" |~"our" |~"that"|~"a" |~"those" |~"your" |~"their"),W1

$define action1

$define action2
$define action3 (~"ate" |~"frigged" | ~"poking" | ~"stroking" |~"felt" |~"look at" |~"rub"),$verbend,W0
$define totalact ($action1 | $action2 | $action3)
$define ending ((~"s",WP1) | (~"es",WP1) | (WP1))
$define wordend ((~"ing",WP1) |(~"e",WP1) |(~"ed",WP1) |(~"er",WP1) |(~"'s") |$ending)

;;***Racial Slur Section***
:HARASVDL slur01, ($pronoun|$badadj),~"pollack",$ending#
:HARASVDL slur02, ($pronoun|$badadj),~"nigger",$ending#
:HARASVDL slur03, (NOT ~"spic",@-5,~"span") AND ($pronoun|$badadj),~"spic",WP1 #
:HARASVDL slur04, ($pronoun|$badadj),~"wop",$ending#
:HARASVDL slur05, ($pronoun|$badadj),~"dago",$ending#
:HARASVDL slur06, ($pronoun|$badadj),~"kike",$ending#
:HARASVDL slur07, ($pronoun|$badadj),~"honkie",$ending#
:HARASVDL slur08, ($pronoun|$badadj),~"whitie",$ending#
:HARASVDL slur10, ($pronoun|$badadj),~"limey",$ending#
:HARASVDL slur11, ($pronoun|$badadj),~"infidel",$ending#
:HARASVDL slur12, ($pronoun|$badadj),~~"skinhead",$ending#
:HARASVDL slur13, ($pronoun|$badadj),~~"neonazi",$ending#
:HARASVDL slur14, ($pronoun|$badadj),~"Aryan",$ending#
:HARASVDL slur15, W1,(~"mutha Fucka"),$ending#
:HARASVDL slur16, W1,(~"mother fucker"),$ending#
:HARASVDL slur17, W1,~W"motha fuck" #
:HARASVDL slur18, ($pronoun|$badadj),(~~"dickhead"),$ending#
:HARASVDL slur19, ~"little" AND $pronoun,W1,~"vulgar",@-10,~"maggot" #
:HARASVDL slur20, $badadj,~"jew",$ending#
:HARASVDL slur21, W1,~"Jew Bastard",$ending#
:HARASVDL slur22, W1,~~"towelhead",$ending#
:HARASVDL slur23, ($pronoun|$badadj),~~"son of a bitch",$ending#

;;***Violent Act Section***
:HARASVDL violentact1, W1,((~"letís"|~"we'll"|~"going to"),(W1|$badadj)),~"lynch"),WP1#
:HARASVDL violentact2, ($pronoun|$badadj),~"rapist",$ending#
:HARASVDL violentact3, (~"want to"|~"going to"|~"have to"),W1,~" rape",WP1#
:HARASVDL violentact4, NOT ~"Newsletter" AND W1,~"rape site",WP1#
:HARASVDL violentact5, NOT ~"Newsletter" AND W1,~"rape house",WP1#

(~"touch" |~"suck" |~"feel" | ~"grab" |~"lick" |~"stroke" |~"spank" |~"fluff" |~"eat"|~"suck"),
$verbend,W0
(~"poke" |~"ram" |~"bang" |~"work" | ~"fuck" |~"frigging" |~"nail" | ~"kiss" |~"fuck"),
$verbend,W0

VSTK Manual 5th Edition CyberSoft Operating Corporation

VSTK Manual 5th Edition 328 of 343

Name Definition
;;***Sex Slur Section***
:HARASVDL sexslur1, ($pronoun|$badadj),~"dyke",$ending#
:HARASVDL sexslur2, ($pronoun|$badadj),~~"cock-sucker",$ending#
:HARASVDL sexslur3, ($pronoun|$badadj),~"whore",$ending#
:HARASVDL sexslur4, W1,~" whor",(~"ed"|~"ing"|~"er"|~"ers"),WP1#
:HARASVDL sexslur5, ($pronoun|$badadj),(~"fag",(""|~"got")),$ending#
:HARASVDL sexslur6, ($pronoun|$badadj),~"butch",$ending#
:HARASVDL sexslur7, ($pronoun|$badadj),~~"dirty-girl",$ending#
:HARASVDL sexslur8, ($pronoun|$badadj),~"slut",$ending#
:HARASVDL sexslur9, W1,~~"candy ass"#

;;***Sex Act Section***
:HARASVDL sexact01, NOT ~"Georgia" AND (W1,(~"cum",(""|~"ming"),WP1) OR ~"cmum1ng" #
:HARASVDL sexact03, W1,~"jerk ",(~"him"|~"me"|~"them")," off",WP1#
:HARASVDL sexact07, W1,~"fondl",@-10,W1,(~"him"|~"her"),WP1#
:HARASVDL sexact09, W1,~"suck ",(~"his"|~"my"|~"your"|$badadj),(~" cock"|~" dick"),WP1#
:HARASVDL sexact10, W1,(~~"dry hump"),$verbend#
:HARASVDL sexact11, W1,(~"doggie",@-4,~"style"),WP1#
:HARASVDL sexact12, W1,((~~"sixty nine ",(""|~"with"|~"to"),W1,(~"me"|~"you"|~"her"|~"him"))
:HARASVDL sexact13, W1,~"do",$verbend,@-3,~~"sixty-nine") #
:HARASVDL sexact14, W1,(~"pork",$verbend),W0, (~"her"|~"him"|~"them"|~"you"),WP1#
:HARASVDL sexact14, W1,~~"Fuckable",WP1#
:HARASVDL sexact15, W1,(~"bon",(~"e"|~"ing")),W1,(~"her"|~"him"),WP1#
:HARASVDL sexact16, W1,~"Give",W1,@-5,~" Head",WP1#
:HARASVDL sexact17, W1,~"blow ",(~"him"|~"me"|~"you")),WP1#
:HARASVDL sexact17, WP1,~~"blowjob",WP1 #
:HARASVDL sexact18, W1,~~"finger fuck",(""|~"ing")WP1#
:HARASVDL sexact19, $totalact,W1,(~"her"|~"your"|~"their"),(W1|$badadj)~"beaver",$ending#
:HARASVDL sexact20, W1,~~"muffdiv",(~"e"|~"ing")#
:HARASVDL sexact21, $totalact,(~"him"|~"her"|~"them"|~"you"),W1,(~w"in the " | ~w"up the
:HARASVDL sexact22, W1,(~"shove "|~"stick"),~" it up your ass"),$ending#
:HARASVDL sexact23, $totalact,W1,$pronoun,W1,~"ass",WP1#
:HARASVDL sexact23, (~"up"|~"in"), "the ",$badadj,W1,~"ass",WP1#
:HARASVDL sexact23a, W1,(~"suck"|~"lick"),$verbend,~"ass",WP1#
:HARASVDL sexact25a, W1,~~"buttfuck",$wordend#
:HARASVDL sexact26a, WP1,~"anal",WP1,(@-100,~"Penetration" |@-100,~~"Sex" |@-
100,~~"fuck"|@-100,~~"Free")#

:HARASVDL sexact26b,
:HARASVDL sexact27a, $totalact,@-10,$pronoun,W1,($badadj|""),~"bush",WP1#
:HARASVDL sexact28a, ~w"jizz",$wordend#
:HARASVDL sexact29a, $totalact,W1,(~"her"|~"my"|~"your"|~"their"),W1,(""|$badadj),(~"gash"|~"slash"),$ending#
:HARASVDL sexact30p, ~"felt",W1,@-10,$pronoun,W1,~"slash",$ending#
:HARASVDL sexact31a, W1,$totalact,W1,@-25,$pronoun,W1,(""|$badadj),(~"dick"|~"prick"|~"cock"),$ending#
:HARASVDL sexact32a, ~W"kiddie porn",WP1#
:HARASVDL sexact33a, ~W"candy whore",WP1#
:HARASVDL sexact34a, ~W"man-boy love",WP1#
:HARASVDL sexact35a, ~"kinderwhore",$ending#
:HARASVDL sexact36a, W1,~"poon"(""|~"tang"),$ending,WP1#
:HARASVDL sexact37a, W1,$totalact,W1,@-10,$pronoun,W1,(""|$badadj),(~"puss",(~"y"|~"ies")#
:HARASVDL sexact38a, W1,$totalact,W1,@-10,$pronoun,W1,(""|$badadj),~"balls",WP1#

WP1,~"anal",WP1,(@-100,~"f*ck" |@-100,~"f-ck" |@-100,~"f_ck" |@-100,~"fu*k" |@-
100,~"fuc*" |@-100,~~"fuk")#

VSTK Manual 5th Edition CyberSoft Operating Corporation

VSTK Manual 5th Edition 329 of 343

Name Definition
;;***Sex Act Section***
:HARASVDL sexact38c, W1,~"fist",$verbend#
:HARASVDL sexact40a, W1,~"0RGA$m"|~"ORG/\SM" #
:HARASVDL sexact42a, WP1,~"spread", ($verbend),@-3,($pronoun),@-3,~"legs",WP1#
:HARASVDL sexact43a, ~W"b@nging girls" #
:HARASVDL sexact44a, W1,~~"carpet munch",($wordend|$verbend) #
:HARASVDL sexact45a, ~W"getting fawkked" #
:HARASVDL sexact46a, W1, ~"gulp",$verbend,W0,~"Cock" #
:HARASVDL sexact48a, W1,~"Jizz",WP1#
:HARASVDL sexact49, W1,(~"Guzzle"|~"Drink"|~"gulp"),@-5,(~"Jizz"|~"cum") #
:HARASVDL sexact50a, W1,~"Ejakulati0n" #
:HARASVDL sexact51, W1~~"swallow his load"#
:HARASVDL sexact51b, W1,~"Suck",$verbend,@-3,(~"him"|~"them"),~" off"#

;;***Sex Parts***
:HARASVDL sexparts01a, W1,~"clit",(~"oris"|""),$ending#
:HARASVDL sexparts02a, W1,(~"my"|~"your"|~"his"|~"their"),W1,~"wang",$ending#
:HARASVDL sexparts03b, W1,(~" her"|~"their"),W1,($badadj|""),~"tit",$ending#
:HARASVDL sexparts04a, W1,~"schlong",$ending#
:HARASVDL sexparts05a, W1,(~"his"|~"their"|",W1,@-25,~"pecker"),$ending#
:HARASVDL sexparts11a, W1,($pronoun,W1,(""|$badadj),~~"asshole"),$ending#
:HARASVDL sexparts15a, W1,(~W"set of knockers"),WP1#
:HARASVDL sexparts15b, W1,($pronoun,W1,(""|$badadj),~"knockers"),WP1#
:HARASVDL sexparts17a, W1,(~W"bearded clam"),WP1#
:HARASVDL sexparts18a, W1,(~~"fuckhole"),$ending#
:HARASVDL sexparts20a, W1,(~w"loose meat sandwich"),$ending#
:HARASVDL sexparts25a, W1,(~w"tampon socket"),$ending#

:HARASVDL sexparts29a,
:HARASVDL sexparts33a, W1,$totalact,W0,($badadj|$pronoun),~"boob",$ending#
:HARASVDL sexparts34a, W1,(~W"pink oboe"),WP1#
:HARASVDL sexparts35a, W1,$pronoun,(""|$badadj),(~"gonzos"|~"wazoos"|~"titties")#
:HARASVDL sexparts38a, W1,~"twat",$ending#
:HARASVDL sexparts39a, W1,~"cunt",$ending#
:HARASVDL sexparts41a, (NOT ("pussy"|"Pussy")) AND $letterP,$letterU,$letterS,$letterS,$letterY #; "Pussy" variants
:HARASVDL sexparts41b, W1,($pronoun,W1,~~"horse cock"),$ending#

:HARASVDL sexparts41c,

W1,($pronoun|$badadj),W1,(~"~"snatch""|~"quiff"|~"muff"|~"love purse"|~"furry cushion"|
~"calyx"|~"hot box"),$ending#

(NOT ("pussie"|~"puzzle"|"Pussie")) AND $letterP,$letterU,$letterS, $letterS,$letterI,$letterE # ;
"Pussie" variants

VSTK Manual 5th Edition CyberSoft Operating Corporation

VSTK Manual 5th Edition 330 of 343

Name Definition
;;***Profanity***
:HARASVDL profanity2a, ~"fuck",$wordend,WP1#
:HARASVDL profanity2a1, ~"fuck",$punct,~"head",$ending#
:HARASVDL profanity3a, ($pronoun|$badadj),,(~~"asshole"),$ending#
;;:HARASVDL profanity3a, ($pronoun|$badadj),((~"asshole",$ending)|(~"bastard",$ending))#
:HARASVDL profanity3b, W1, (~"Crazy"|~"Nasty"),.*,~"Bitch" # ;
:HARASVDL profanity3c, W1,~"shithead" OR ~W"holy SH|T" #
:HARASVDL profanity4a, W1,~" hot",.*,~" ass " #
:HARASVDL profanity5a, W1,~" fuc",@-3,~"ing",WP1 #
:HARASVDL Sexact 00005, WP1,~"fuck",$wordend#
;;
;; Signatures added Tue Nov 29 13:01:42 2005
;;
;:H 00115, (WP1,~~"F",$a[0-1],~~"ck",$wordend) OR (WP1,~~"Fu",$a[0-1],~~"k",$wordend)#
:H 00116, WP1,~"lesbo",$ending#
:H 00117, WP1,~"lezzie",$ending#
:H 00118, WP1,~"bugger",(~"ing"|~"ed"),WP1#
:H 00119, WP1,~"buggerer",$ending#

VSTK Manual 5th Edition CyberSoft Operating Corporation

EICAR – VIRUS STRING TEST SYSTEM
European Institute for Computer Antivirus Research

European Institute for Computer Antivirus Research

The EICAR Antivirus test file is used for determining if an Antivirus product will sufficiently
detect viruses. This test file is not a real virus and it is only used for testing the effectiveness
of Antivirus products. When testing please use UAD with VFind.

EICAR Version 2 (Current Version)

The EICAR Version 2 test suite was made necessary when some viruses started to use the
EICAR test string as camouflage. Many antivirus products would detect the EICAR string
and not report the virus. This was never a problem with VFind which reported both the virus
and the EICAR test string. The problem was corrected when the EICAR changed the test
standard so that the test would only be positive if the string was exact and did not contain any
additional bytes of data either before or after the test string. According to the standard, any
antivirus product which detects the EICAR test string as a subset of a byte stream of data
would fail the test - this test suite conforms to the standard. Please read the Version 2 EICAR
like test suite below.

eicar.com

X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!
$H+H*

eicar.vdl

:old-style EICAR TEST -- Fake Virus -- IGNORE,
"\x58\x35\x4f\x21\x50\x25\x40\x41\x50\x5b\x34\x5c\x50\x5a\x58\x35\x34\x28\x50\x5e\x29\
x37\x43\x43\x29\x37\x7d\x24\x45\x49\x43\x41\x52\x2d\x53\x54\x41\x4e\x44\x41\x52\x44\x
2d\x41\x4e\x54\x49\x56\x49\x52\x55\x53\x2d\x54\x45\x53\x54\x2d\x46\x49\x4c\x45\x21\x2
4\x48\x2b\x48\x2a" #

:new-style EICAR TEST -- Fake Virus -- IGNORE, ABS 0,
"\x58\x35\x4f\x21\x50\x25\x40\x41\x50\x5b\x34\x5c\x50\x5a\x58\x35\x34\x28\x50\x5e\x29\
x37\x43\x43\x29\x37\x7d\x24\x45\x49\x43\x41\x52\x2d\x53\x54\x41\x4e\x44\x41\x52\x44\x
2d\x41\x4e\x54\x49\x56\x49\x52\x55\x53\x2d\x54\x45\x53\x54\x2d\x46\x49\x4c\x45\x21\x2
4\x48\x2b\x48\x2a", EOD #

VSTK Manual 5th Edition 331 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

EICAR Version 2 (Non Standard)

This version does not conform to the EICAR test standard. It will detect the test string even as
a subset of a larger byte stream. This test suite is the same as the obsolete Version 1 test suite.

eicar2 nonstd.vdl

;; $Id: eicar.vdl,v 1.1.1.1 2002/11/15 03:34:41 perry Exp $
;; COPYRIGHT 2002 BY CYBERSOFT, INC. ALL RIGHTS RESERVED.
:EICAR TEST Fake Virus -
IGNORE,"\x58\x35\x4f\x21\x50\x25\x40\x41\x50\x5b\x34\x5c\x50\x5a\x58\x35\x34\x28\x50
\x5e\x29\x37\x43\x43\x29\x37\x7d\x24\x45\x49\x43\x41\x52\x2d\x53\x54\x41\x4e\x44\x41\
x52\x44\x2d\x41\x4e\x54\x49\x56\x49\x52\x55\x53\x2d\x54\x45\x53\x54\x2d\x46\x49\x4c\x
45\x21\x24\x48\x2b\x48\x2a"#

VSTK Manual 5th Edition 332 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

VSTK FAMILY OF PRODUCTS
End User License Agreement

CyberSoft Operating Corporation
End User License Agreement

IMPORTANT - - READ CAREFULLY:

This End User License Agreement (“License Agreement”) is a legally enforceable agreement
between you (either an individual or a single entity) (“you” or “LICENSEE”) and CyberSoft
Operating Corporation (“CyberSoft”), regarding the use of the Licensed Software (as defined
below) included or supplied with or on, or incorporated into, this media and/or downloaded by
or otherwise provided to you in electronic form or otherwise. By installing or otherwise using
the Licensed Software, you agree to be bound by the terms of this License Agreement. If you
do not agree to the terms of this License Agreement, do not install or use the Licensed
Software; however, you may return it to CyberSoft or the third party distributor, dealer or
supplier (“Distributor”) from whom you purchased the Licensed Software for a full refund.

DEFINITIONS:

“Embedded Programs” means all third party software, modules, products, interfaces, data files
and other files and programs provided by CyberSoft as part of or in connection with its
proprietary software.

“Invoice” means the purchase order, invoice or other documentation pursuant to which you
licensed the Licensed Software.

 “Licensed Software” means (i) CyberSoft’s proprietary software, which may include but is
not limited to VFind Security Tool Kit Standard Edition (VSTK), VFind Security Tool Kit
Turbo (VSTK-T), VFind Security Tool Kit Lite (VSTK-L), VSTK for Windows (VSTK-W),
Avatar (Avatar), VFind Security Tool Kit Standard Special (VSTK-SS), VFind Security Tool
Kit Turbo Special (VSTK-TS), VFind Security Tool Kit Lite Special (VSTK-LS), VSTK for
Windows Special (VSTK-WS), Avatar Special (Avatar-S), VFind VStick SysAdmin
(VSTICK-S), VFind VStick Financial (VSTICK-F) and/or other CyberSoft-branded products,
as applicable, (ii) the Embedded Programs, (iii) the Updates, and (iv) all documentation,
instructions, manuals, diagrams and other materials, in whatever medium or format, pertaining
to the foregoing.

“System” means a single computer system with one or more cpu processors sharing a common
motherboard or backplane (but in no event shall a network constitute a motherboard or
backplane hereunder).

VSTK Manual 5th Edition 333 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

“Updates” means any virus definition updates, hash codes and/or product updates/upgrades
included in the Support Services as solely determined by CyberSoft.
“Users” means all persons or entities gaining access to the Licensed Software by or through
you and/or any of your Systems.

”Maintenance” means Upgrades that are included in the Support Services as solely determined
by CyberSoft.

“Support” means a reasonable amount of contact by email, postal mail, courier delivery, in-
person, fax, telephone or other communications medium. Reasonable shall be determined
solely by CyberSoft. CyberSoft reserves the right to discontinue support to any individual,
without cause or notice. In addition, CyberSoft solely reserves the right to limit the number of
individuals who may contact CyberSoft for Support.

“Modified Support” means a reasonable, limited and restricted amount of contact by email,
postal mail, courier delivery, in-person, fax, telephone or other communications medium.
Reasonable shall be determined solely by CyberSoft. Limited is defined as 30 calendar days
from the date of the CyberSoft Invoice. After the 30 calendar day period Modified-Support is
only available by means of email and only for the term of the contact as determined by the
CyberSoft Invoice. Verbal communications is not available after the initial 30-day period.
Restricted is defined as topic restrictions as determined solely by CyberSoft on a case-by-case
basis. Determination of Restricted on one case does not influence the determination of
Restricted on any other case and can be modified without notice by CyberSoft. CyberSoft
reserves the right to discontinue support to any individual, without cause or notice. In
addition, CyberSoft solely reserves the right to limit the number of individuals who may
contact CyberSoft for Modified-Support.

LICENSE GRANTED:

Subject to the conditions herein, CyberSoft hereby grants to you, as LICENSEE, a non-
transferable, non-exclusive, limited license to use the Licensed Software in machine-readable
form on one System (the “License”) located at the site, if any, designated in the Invoice (the
“Designated Site”). The License granted herein is subject to all further restrictions as set forth
in the Invoice. You shall cause all Users to comply with the terms of this License Agreement
and shall be liable for all acts and omissions of such Users. No license, right or interest in any
trademark, trade name or service mark of CyberSoft is granted under this License.

You may use the Licensed Software solely for your own internal use. Any other use of the
Licensed Software (including without limitation timesharing, rental, facility management or
service bureau usage) is strictly prohibited.

VSTK Manual 5th Edition 334 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Except as otherwise set forth in the Invoice or as agreed by Cybersoft in writing, you may not
sell, lease, assign, sublicense or otherwise transfer, in whole or in part, this License
Agreement, the License, the Licensed Software and other CyberSoft-provided materials, or
any licenses or rights granted hereunder; provided, however, that (a) if the Licensed Software
is licensed for the express purpose of integration into a larger system, Licensee is permitted to
sublicense the Licensed Software solely as part of such system (and not as a stand-alone
product) subject to all other terms and conditions hereof, (b) if Licensee is a dealer or reseller
of software and is licensing the Licensed Software for the express purpose of resale, Licensee
may sublicense the Licensed Software to its customers subject to all other terms and
conditions hereof (including, without limitation, that such customers may not sublicense the
Licensed Software), and (c) transfer to the United States Government as a designated end user
when part of a turnkey system is expressly permitted, subject to Section 12 hereof on U.S.
Government Restricted Rights.

The License granted hereunder is for the object code version of the Licensed Software only.
You shall not, and shall not permit anyone under your direction or control to, reverse engineer,
disassemble or de-compile the Licensed Software or attempt to do so. LICENSEE may not
modify, adapt, translate or create derivative works of the Licensed Software without
CyberSoft’s express written consent; provided, however, that if the Licensed Software is
licensed for the express purpose of integration into a larger system, Licensee is permitted to do
so. The Licensed Software is licensed as a single product. Embedded Programs may be used
only for purposes of (i) running the Licensed Software, and (ii) extracting data from the
Licensed Software for use with other programs. Embedded Programs may not be used for
purposes of application development, modification or customization, or running programs
other than the Licensed Software.

LICENSEE may make a reasonable number of copies of the Licensed Software for backup
and archival purposes only, and must include on all copies of the Licensed Software all
copyright, government restricted rights and other proprietary notices or legends included on or
in the Licensed Software as provided to LICENSEE.

Notwithstanding anything to the contrary herein, LICENSEE’s access to and use of the
Embedded Programs shall be and remain subject to all third party and/or open source licenses
applicable to such Embedded Programs, and LICENSEE shall comply with same.

LICENSEE shall be solely responsible for ensuring that performance of its obligations and
exercise of its rights (including without limitation its use of the Licensed Software) under this
License Agreement comply with all applicable federal, state, local and international laws,
rules, regulations and orders (collectively, “Laws”), including without limitation all present
and future laws and regulations relating to protection of intellectual property and privacy.

VSTK Manual 5th Edition 335 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

DELIVERY, INSTALLATION, ACCEPTANCE AND RISK OF LOSS:

If CyberSoft delivers the Licensed Software on CD-ROM or other tangible media, (i)
CyberSoft shall deliver the Licensed Software to a common carrier, (ii) LICENSEE assumes
all risk of loss or damage upon delivery of the Licensed Software by CyberSoft to the
common carrier, and (iii) acceptance shall occur upon delivery of the Licensed Software by
CyberSoft to the common carrier. In all other cases, acceptance shall occur immediately upon
installation of the Licensed Software by LICENSEE. LICENSEE shall be solely responsible
for installation of the Licensed Software.

SUPPORT SERVICES:

Limited to the products identified with the part numbers VSTK, VSTK-T, VSTK-L, VSTK-
W, and AVATAR, for a period of twelve (12) months following the Invoice date, CyberSoft
will provide to you, free of charge, Maintenance and Support services related to the Licensed
Software as further described at www.cybersoft.com/purchase/prices (“Support Services”).
Licensees desiring extended Support Services may purchase same at the www.cybersoft.com.
All terms and conditions of this License Agreement will apply.

 Limited to the products identified with the part numbers VSTK-SS, VSTK-LS, VSTK-WS,
VSTK-TS, AVATAR-S, VSTICK-S and VSTICK-F, for a period of time specified in the
CyberSoft Invoice, CyberSoft will provide to you, free of charge, Maintenance and Modified-
Support services related to the Licensed Software as further described at
www.cybersoft.com/purchase/prices (“Support Services”). In no extent will free services
exceed twelve (12) months following the Invoice date. Licensees desiring extended Support
Services may purchase same at the www.cybersoft.com. All terms and conditions of this
License Agreement will apply.

LICENSEE shall be solely responsible for providing all necessary hardware and software to
run the Licensed Software and to obtain the Support Services. All telephone and connection
arrangements and charges from LICENSEE’s facility to CyberSoft shall be LICENSEE’s
responsibility.

Except as otherwise provided in Section 8.1 hereof with respect to the Updates, all Support
Services are provided on an “as is”, “where is” basis, and CyberSoft makes no warranties with
respect to such Support Services.

CyberSoft may, in its sole discretion, require LICENSEE to purchase and/or install certain
Updates within a specified time period after their release, and may modify, suspend or
terminate the Support Services, in whole or in part, upon LICENSEE’s failure to timely do so,
without liability or obligation to LICENSEE. Nothing herein shall be construed as requiring
CyberSoft to support more than the most recent release of the Licensed Software.

VSTK Manual 5th Edition 336 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Any technical information you provide to CyberSoft as part of the Support Services may be
used by CyberSoft for product support and development; provided, however, that CyberSoft
will not use such technical information in a form that personally identifies you.

By providing utility or other programs created by or for you to operate in conjunction with the
Licensed Software, you grant CyberSoft a perpetual, non-exclusive, irrevocable, worldwide,
transferable, royal-free, fully paid-up license (with right to sublicense) to use, reproduce,
distribute, display, perform, create derivative works of, and modify the source code and
executable code versions of such programs.

TERM AND TERMINATION:

Limited to the products identified with the part numbers VSTK, VSTK-T, VSTK-L, VSTK-
W, and AVATAR, the effective date of this License shall be the date of the CyberSoft Invoice
date or the date of the initial use, whichever is earlier, of the Licensed Software and its term is
perpetual, subject to the termination provisions of this Section 5.
Limited to the products identified with the part numbers VSTK-SS, VSTK-LS, VSTK-WS,
VSTK-TS, AVATAR-S, VSTICK-S and VSTICK-F, the effective date of this License shall be
the CyberSoft Invoice date or the date of the initial use, whichever is earlier, of the Licensed
Software and its term is as specified on the CyberSoft Invoice, subject to the termination
provisions of this Section 5. If no term is specified in the CyberSoft Invoice then the term
shall be twelve (12) months from the CyberSoft Invoice date.

This License will terminate automatically upon your failure to comply with any term of this
License Agreement. Upon termination of this License, you shall discontinue all use of the
Licensed Software. In such event, the License and rights granted hereunder shall expire and
you shall have no further rights or access to the Licensed Software. CyberSoft may terminate
provision of the Support Services at any time, without notice to you, if it ceases to provide
such services to its licensees generally.

PAYMENTS:

In consideration of the License and other rights granted by CyberSoft hereunder, you agree to
pay the license fee specified in the Invoice and/or otherwise imposed by CyberSoft or any
Distributor in connection herewith (“License Fees”). Unless otherwise provided in the
Invoice, LICENSEE shall pay all License Fees within thirty (30) days after the date of
CyberSoft’s or Distributor’s invoice therefor.

All payments shall be made in U.S. currency. Any sum not paid by LICENSEE when due
shall bear interest until paid at a rate of 1.5% per month (18% per annum), or the maximum
rate permitted by law, whichever is less.

VSTK Manual 5th Edition 337 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

LICENSEE shall be responsible for the costs, including without limitation, reasonable
attorneys’ fees and court costs, incurred by CyberSoft in connection with CyberSoft’s
collection of any past-due amounts under this License Agreement. If LICENSEE is the
United States Government, FAR 52.232-25PROMPT PAYMENT (OCT.2003) applies and is
incorporated herein by reference, in lieu of the forgoing payment provisions of this Section
6.2.

All payments required under Section 6.1 and/or Section 6.2 or otherwise under this License
are exclusive of taxes and you agree to bear and be responsible for the payment of all such
taxes (except for taxes based upon CyberSoft’s income) including, but not limited to, all sales,
use, rental receipt, personal property, import and value-added or other taxes which may be
levied or assessed in connection with this License.

PROPRIETARY RIGHTS; CONFIDENTIALITY:

CyberSoft Operating Corporation is a licensee of CyberSoft, Inc., the owner of the Licensed
Software. As between LICENSEE and CyberSoft, CyberSoft and its licensors (including but
not limited to CyberSoft, Inc.) shall be the sole owners of all patent, copyright, trademark,
trade secret and other proprietary rights in and to the Licensed Software, and all modifications
thereto and derivative works thereof.

The Licensed Software is protected under the copyright laws of the United States and
equivalent or similar international laws and treaties, including without limitation, the Berne
Convention. CyberSoft and its licensors (including but not limited to CyberSoft, Inc.) may
utilize all ideas, suggestions, feedback, improvements, data, reports or the like that
LICENSEE provides to CyberSoft with respect to the Licensed Software without any
obligation to LICENSEE.

Although copyrighted, the Licensed Software (and Embedded Programs) is unpublished and
contains proprietary and confidential information of CyberSoft and its licensors(including but
not limited to CyberSoft, Inc.). LICENSEE agrees to maintain the Licensed Software
(including Embedded Programs) in confidence and to use a reasonable degree of care to
protect the confidentiality of the Licensed Software (and the Embedded Programs).

LIMITED WARRANTY:

CyberSoft warrants the media on which the Licensed Software is provided, if any, to be free
from defects in materials and workmanship for ninety (90) days after delivery. Defective
media may be returned for replacement without charge during the ninety (90) day warranty
period unless the media have been damaged by accident or misuse. In addition, CyberSoft
warrants, for ninety (90) days after acceptance, that the unaltered Licensed Software
substantially conforms to the documentation that accompanies it (CyberSoft expressly
reserves the right to provide the documentation on the same media as the Licensed Software).

VSTK Manual 5th Edition 338 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

Any implied warranties not effectively disclaimed pursuant to Section 8.3 hereof are limited to
the duration of the express warranties stated in this Section 8.1 NOTWITHSTANDING
ANYTHING TO THE CONTRARY HEREIN, THE WARRANTIES SET FORTH IN THIS
SECTION 8.1 DO NOT APPLY WITH RESPECT TO FREE, DEMONSTRATION OR
ILLEGALLY OBTAINED COPIES OF THE LICENSED SOFTWARE.

CyberSoft’s entire liability and your exclusive remedy for breach of the foregoing warranties
shall be, at the option of CyberSoft, repair or replacement of the Licensed Software (or the
part thereof that does not meet the warranty), when returned to CyberSoft or, if repair or
replacement is not reasonably practicable (as determined by CyberSoft in its sole discretion)
return of the price paid for such nonconforming portion of the Licensed Software.
Your Invoice must accompany any warranty claim. This limited warranty is void if failure of
the Licensed Software has resulted from accident, misuse, misapplication or breach of this
License Agreement. Any replacement software will be warranted for the remainder of the
original warranty period or thirty (30) days, whichever is longer. Outside of the United States,
neither these remedies nor any Support Services offered by CyberSoft are available without
proof of purchase from an authorized international source.

THE EXPRESS LIMITED WARRANTIES SET FORTH IN SECTION 8.1 ARE IN LIEU
OF AND, TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW,
CYBERSOFT, ITS DISTRIBUTORS AND LICENSORS (including but not limited to
CyberSoft, Inc.) SPECIFICALLY DISCLAIM, ANY AND ALL OTHER WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES
OF TITLE, NONINFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, WITH REGARD TO THE LICENSED SOFTWARE AND THE
PROVISION OF OR FAILURE TO PROVIDE SUPPORT SERVICES. Without limiting the
generality of the foregoing, none of CyberSoft, its Distributors or licensors (including but not
limited to CyberSoft, Inc.) warrant that:(i) operation of any of the Licensed Software shall be
uninterrupted or error free, (ii) that functions contained in the Licensed Software shall operate
in combinations which may be selected for use by LICENSEE or meet LICENSEE’s
requirements, or (iii) that the Licensed Software will detect all hacker attacks, viruses, Trojan
horses, worms or other software routines or hardware components designed to permit
unauthorized access to or to disable, erase or otherwise harm any software, hardware or data,
if applicable.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT
WILL CYBERSOFT OR ITS DISTRIBUTORS OR LICENSORS (including but not limited
to CyberSoft, Inc.) BE LIABLE TO LICENSEE, USERS OR ANY THIRD PARTY FOR
SPECIAL, INCIDENTAL, INDIRECT, EXEMPLARY, PUNITIVE OR CONSEQUENTIAL
DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR
LOSS OF INCOME, PROFITS, USE OF INFORMATION OR ANY OTHER PECUNIARY
LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THE LICENSED
SOFTWARE OR THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT
SERVICES, EVEN IF CYBERSOFT HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

VSTK Manual 5th Edition 339 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

CYBERSOFT’S AND ITS DISTRIBUTORS’ AND LICENSORS’ (including but not limited
to CyberSoft, Inc.’s) ENTIRE LIABILITY WITH RESPECT TO THE LICENSED
SOFTWARE, THE SUPPORT SERVICES AND THIS LICENSE AGREEMENT SHALL
BE LIMITED, IN THE AGGREGATE, TO THE LICENSE FEES ACTUALLY PAID BY
LICENSEE FOR THE LICENSED SOFTWARE.

COPYRIGHT AND TRADEMARK INDEMNIFICATION:

CyberSoft will defend, at its expense, any action brought against LICENSEE to the extent that
it is based on a claim that the use of the Licensed Software within the scope of the License
infringes any United States copyright or trademark. CyberSoft will indemnify LICENSEE
from any costs, damages and fees incurred by LICENSEE which are attributable to such
claim, provided that LICENSEE notifies CyberSoft promptly in writing of the claim.

LICENSEE shall permit CyberSoft to defend, compromise or settle the claim and provide all
available information, assistance and authority to enable CyberSoft to do so, provided
CyberSoft reimburses LICENSEE for such activity. LICENSEE shall have no authority to
settle any claim on behalf of CyberSoft.

Should the Licensed Software become or in CyberSoft’s opinion, be likely to become the
subject of a claim of infringement of a U.S. copyright or trademark, CyberSoft may (i) procure
for LICENSEE, at no cost to LICENSEE, the right to continue to use the Licensed Software,
(ii) replace or modify the Licensed Software, at no cost to LICENSEE, to make same non-
infringing, or (iii) if the right to continue to use cannot be procured or the Licensed Software
cannot be replaced or modified, terminate the License to use such Licensed Software, remove
the Licensed Software, and where a specified License Fee was paid by LICENSEE, grant
LICENSEE credit thereon as depreciated on a straight-line three (3) year basis.

CyberSoft shall have no liability for any claim of copyright or trademark infringement based
on the (i) use of other than the then latest release of the Licensed Software from CyberSoft, if
such infringement could have been avoided by the use of the latest release of the Licensed
Software and such latest version had been made available to LICENSEE, (ii) use or
combination of the Licensed Software with software, hardware or other materials not provided
by CyberSoft, or (iii) modifications to the Licensed Software made by persons other than
CyberSoft.

THIS SECTION 9 STATES THE ENTIRE LIABILITY OF CYBERSOFT AND ITS
DISTRIBUTORS AND LICENSORS (including but not limited to CyberSoft, Inc.) WITH
RESPECT TO INFRINGEMENT BY THE LICENSED SOFTWARE OR ANY PART
THEREOF AND NONE OF CYBERSOFT, ITS DISTRIBUTORS OR LICENSORS
(including but not limited to CyberSoft, Inc.) SHALL HAVE ANY ADDITIONAL
LIABILITY WITH RESPECT TO ANY ALLEGED OR PROVEN INFRINGEMENT.

VSTK Manual 5th Edition 340 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

INDEMNIFICATION BY LICENSEE:

LICENSEE shall defend, indemnify and hold CyberSoft, its Distributors and licensors
(including but not limited to CyberSoft, Inc.) and their respective officers, directors,
shareholders, employees, agents and representatives harmless from and against any losses,
liabilities, damages, demands, penalties and expenses (including, without limitation, court
costs and attorneys’ fees) arising out of or in connection with (i) LICENSEE’s or Users’ use
of the Licensed Software, or (ii) any breach by LICENSEE, its Users, employees, agents or
contractors of any representation, warranty or covenant of LICENSEE hereunder. Provided,
however, if LICENSEE is the United States Government, the provisions of this Section 10
shall not apply.

EXPORT:

LICENSEE shall comply with all export or re-export restrictions and regulations imposed by
the government of the United States. Without limiting the generality of the foregoing and
regardless of any disclosure made by LICENSEE to CyberSoft, its Distributors or licensors
(including but not limited to CyberSoft, Inc.) of an ultimate destination of the Licensed
Software, LICENSEE shall not re-export or transfer, whether directly or indirectly, the
Licensed Software or any system containing such Licensed Software, to anyone outside the
United States of America without first obtaining a license from the U.S. Department of
Commerce or any other agency or department of the United States Government, as required.
The VFind™ Security ToolKit has been approved for export under General License GTDU,
ECCN 5D002C. A special license is required for export to certain countries.

U.S. GOVERNMENT RIGHTS:

All CyberSoft products and documentation are commercial in nature. The Licensed Software
is “Commercial Computer Software,” as that term is defined in FAR 2.101. Where Licensee
is an agency of the United States Government other than the Department of Defense, the
clause at FAR 52.227-19COMMERCIAL COMPUTER SOFTWARE (DEC. 2007) applies
and is incorporated herein by reference. Except as expressly provided in FAR 52.227-19, as
applicable, the Licensed Software is licensed to United States Government end users with only
those rights as granted to all other end users, according to the terms and conditions contained
in this License Agreement. Manufacturer is CyberSoft Operating Corporation, 1958 Butler
Pike, Suite 100, Conshohocken, Pennsylvania 19428, U.S.A.

VSTK Manual 5th Edition 341 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

FORCE MAJEURE:

CyberSoft and CyberSoft, Inc. shall not be liable to LICENSEE for any failure or delay
caused by events beyond CyberSoft’s reasonable control, including, without limitation, acts or
omissions of LICENSEE or its Users, acts of God, acts of government, acts of war or
terrorism, sabotage, outages suffered by electric utilities, breakdown or damage to machinery,
equipment or software, malfunctioning of software, corruption of data, unavailability of or
interruption or delay in the Internet, telecommunications or third party services, failure of third
party software, labor disputes, accidents, shortages of labor, fuel, raw materials or equipment,
or technical failures (including, without limitation, defects in any Embedded Software).

GOVERNING LAW:

This License Agreement is made under and shall be governed by and construed in accordance
with the laws of the Commonwealth of Pennsylvania, United States of America. Any dispute
arising out of or in connection with this License Agreement shall be adjudicated exclusively in
the state or federal courts located in Montgomery County, Pennsylvania, and all parties
irrevocably consent to personal jurisdiction and venue therein. Provided, however, if
LICENSEE is the United States Government, in lieu of the foregoing, this License Agreement
shall be governed by the laws of the United States of America and the cases decided
thereunder; and any dispute arising out of or in connection with this License Agreement shall
be adjudicated in the Court of Federal Claims or the appropriate Board of Contract Appeals.

AMENDMENT:

The terms of this License Agreement may not be amended except in a writing signed by you
and an authorized representative of CyberSoft. For purposes of this Section 15, Peter V.
Radatti, CEO/Chairman or a person expressly designated by either of them in writing shall be
an authorized representative of CyberSoft.

ENTIRE AGREEMENT:

This License Agreement and the Invoice, if any, constitute the entire agreement between you
and CyberSoft with respect to the subject matter hereof and supersede all prior agreements,
oral or written, with respect to the matters contained herein or relating thereto. In the event of
a conflict between the Invoice and this License Agreement, the terms of this License
Agreement shall govern.

NO WAIVER:

No failure or delay of CyberSoft to exercise any right, power or remedy, or partial exercise of
any right, power or remedy, will preclude any future exercise of any such right, power or
remedy. No express waiver or assent by CyberSoft to any default in any term or condition of
this License Agreement shall constitute a waiver or assent to any succeeding default in the
same or any other term or condition hereof.

VSTK Manual 5th Edition 342 of 343

VSTK Manual 5th Edition CyberSoft Operating Corporation

BINDING EFFECT:

This License Agreement shall be binding upon and shall inure to the benefit of the parties
hereto and their successors and permitted assigns. Except as otherwise expressly provided
herein, the provisions of this License Agreement will not be construed as conferring any rights
on any other persons.

SEVERABILITY:

If any provision of this License Agreement will be held illegal, unenforceable, or in conflict
with any law of a federal, state, local or international government having jurisdiction over this
License Agreement, the validity of the remaining portions or provisions hereof will not be
affected thereby. IT IS EXPRESSLY UNDERSTOOD AND AGREED THAT EACH
PROVISION OF THIS LICENSE AGREEMENT WHICH PROVIDES FOR A
LIMITATION OF LIABILITY, DISCLAIMER OF WARRANTIES, INDEMNIFICATION
OR EXCLUSION OF DAMAGES OR OTHER REMEDY IS INTENDED TO BE
ENFORCED AS SUCH. FURTHER, IT IS EXPRESSLY UNDERSTOOD AND AGREED
THAT IN THE EVENT ANY REMEDY UNDER THIS LICENSE AGREEMENT IS
DETERMINED TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, ALL LIMITATIONS
OF LIABILITY AND EXCLUSIONS OF DAMAGES OR OTHER REMEDIES SHALL
REMAIN IN EFFECT.

NOTICES:

All notices from you to CyberSoft must be in writing and sent by registered or certified mail,
return receipt requested, or international equivalent, or by facsimile or electronic mail (receipt
confirmed).

VSTK Manual 5th Edition 343 of 343

